logo

Responsive Polymeric Nanoparticles for Biofilm-infection Control

FEATURE ARTICLE

Responsive Polymeric Nanoparticles for Biofilm-infection Control

Su Lin-Zhu
Liu Yong
Li Yuan-Feng
An Ying-Li
Shi Lin-Qi
Chinese Journal of Polymer ScienceVol.39, No.11pp.1376-1391Published in print 18 Sep 2021Available online 25 Jul 2021
8600

With the emergence of multidrug resistance (MDR) in many pathogens, bacterial infections are becoming a growing threat to public health. The frightening scenario is due largely to the formation of biofilms, in which the bacteria are extremely recalcitrant to the conventional antibiotic regimens. To address the emergence of MDR and biofilm-associated infections, numerous polymer-based materials have been designed and prepared recently. The subject of this perspective is the recent development of polymer-based materials that have been applied to combat multidrug-resistant pathogens, to prevent the formation of biofilms, or enhance the eradication efficacy to mature biofilms via killing biofilm-bacteria or dispersing biofilms. The advantages and shortcomings of these polymer-based materials are discussed, as well as the challenges we are facing in the clinical translation of these systems.

pic

Polymer-based materials have been applied in combating biofilm-associated infections in two major aspects. First, polymers-modified surfaces can be used to avoid bacterial adhesion and subsequently prevent biofilm formation. Besides, mature biofilms are eradicated by antimicrobials-loaded polymeric nanocarriers, polymeric nanocarriers with intrinsic antibacterial capacity, and polymeric biofilm dispersants.

AntibacterialBiofilmMultidrug resistancePolymeric nanoparticlesStimuli-responsive

INTRODUCTION

Bacteria-associated infections are posing an unprecedented threat to human health worldwide.[1] It is estimated that, if no effective measures are taken, bacterial infection will surpass cancer and become the number one cause of human death by 2050.[2] The frightening scenario of multidrug resistance (MDR) was partly promoted by the abuse and misuse of antibiotics and partly promoted by the ineffectiveness of the antibiotic regimens against bacterial biofilms.[3] Biofilms are well-structured bacterial communities in which bacterial cells aggregate in the self-produced extracellular polymeric substances (EPS) consisting of polysaccharides, proteins, glycoproteins, and nucleic acids.[4] The porous nature of an EPS matrix allows the penetration of nutrients and transport of wastes for the metabolic activities of the inhabitants.[5] In the meantime, biofilms protect the inhabitants against the host immune systems and environmental challenges,[4] as well as antibiotic pressure.[3] Hydrophobic antibiotics barely penetrate bacterial biofilms due to their poor solubility. Besides, most of the commonly used antibiotics carry a positive net charge, and thereby, the negatively charged EPS matrix can absorb those cationic antibiotics through electrostatic attractions and hinder their deep penetration in biofilms. For those antibiotics that penetrate in biofilms, they may face the possibility of being pumped out by the over-expressed drug efflux pumps in biofilms[6] or being hydrolysed by the local bacterial enzymes such as β-lactamases.[7] Also, antibiotics are less effective for the bacteria in their biofilm-phenotype that are featured by their reduced metabolic and growth activities compared with their planktonic counterparts. Taken together, all of the above reasons lead to the low efficiency of traditional antibiotics in eradicating biofilms. Usually, up to 1000 times more dosage of antibiotics are required to treat bacteria in biofilms than their planktonic counterparts, ultimately expediting the development of antimicrobial resistance.[8]

The development of new strategies for biofilm-associated infection control is eagerly needed, either to develop new antibiotics or to improve the bactericidal efficacy of the current antibiotic regimens. Unfortunately, the lifetime of new antibiotics is becoming increasingly shorter since the emergence of drug resistance in bacteria. In this regard, the motivation to develop and market new antibiotics with huge research costs is decreasing.[9] To solve the dilemma, over the past decades, numerous nanotechnology-based systems have been designed as antimicrobials and delivery systems to facilitate the penetration and drug release in biofilms, such as metal-based nanocomposites (e.g., metal oxide-, Ag-, and Au-based nanoparticles), carbon-based nanomaterials (e.g., graphene materials, carbon quantum dots), and polymer-based nanoparticles (natural and synthetic polymeric nanoparticles).[10,11] Among them, synthetic polymeric nanoparticles are flourishing, since the development of polymerization methodologies allows the synthesis of polymers with precise structures and molecular sizes.[12-15] Also, there are multitudinous functional groups that could be modified on the polymer chains via post-polymerization modification, endowing the polymer with different physicochemical properties applicable in the biofilm microenvironment, such as biocompatibility, stimuli-responsiveness and degradability.[16]

Polymer nanosystems can be applied in combating biofilm-associated infections in two major aspects, as summarized in Scheme 1. First, polymers can be used to modify the surfaces of substrates to avoid bacterial adhesion and subsequently prevent biofilm formation, yielding the antifouling surfaces or antibacterial surfaces. Besides, mature biofilms are eradicated by polymer nanosystems from different perspectives. With rational design, bactericidal polymers can be armed with intrinsic antibacterial capacities, for example, quaternary ammonium-containing polymers,[17-21] polycations,[22-26] polysaccharides[27] and antimicrobial peptides (AMPs).[28-30] Moreover, polymeric nanocarriers can deliver antimicrobials deep into biofilms, enhance the penetration and accumulation of antimicrobials, and release the loaded antimicrobials inside biofilms, improving the efficacy of conventional antimicrobials yet minimizing their side effects on normal tissues.[31] Besides, polymeric nanoparticles may serve as a biofilm dispersant, rendering an efficient way to eradicate biofilms. In this regard, once the EPS matrix is dispersed, antimicrobials will exhibit better bactericidal efficacy against the remaining biofilms. In this perspective, we briefly focus on the recent development of polymer-based materials in eradicating biofilm and their potential clinical applications. Also, we discuss the challenges in their clinical translation.

1
Schematic illustration of the applications of responsive polymeric nanoparticles in biofilm-associated infection control. Responsive polymeric nanoparticles can be used to deliver antimicrobials, kill bacteria directly, or disperse biofilms to combat mature biofilms.
pic

MICROENVIRONMENT AT INFECTION SITES

The metabolism activities of microorganisms embedded in infectious biofilms lead to the establishment of unique chemical and physical properties at infection sites, such as the leaky blood vessels, acidic environment, oxygen gradients, diverse enzymes, high levels of H2O2, and toxins. These characteristics not only discriminate the infection sites from the normal tissues but also give implications for designing smart antimicrobial systems (Fig. 1). In this section, we focus on the crucial microenvironment at infection sites and their functions in antimicrobial systems.

1
A summary of the physio-chemical factors in the microenvironment of infection sites and the typical chemical structures that can respond to the corresponding factors.
pic
Enhanced Permeability and Retention (EPR) Effect

The EPR effect is a major effect known as that nanoparticles are allowed to accumulate in tumor tissue other than normal tissue.[32] This is because, in normal tissues, the endothelial space of micro-vessels is dense and intact, and nanoparticles are less likely to bypass the vascular wall. However, in those diseased tissues, the vascular wall space is much wider, leading to the permeability and retention of nanomedicines.[33-36] Of note, the EPR effect was observed not only in tumor tissues, but also in bacterial infection, inflammation, and injury sites.[37,38] During bacterial infection, proteases play an important role in forming leaky vascular structures.[39-42] The bradykinin-generating cascade of endogenous proteases is activated by exogenous proteases. Then, the endogenous proteases can activate thrombin, form fibrin and generate kinin, leading to the increase in vascular permeability.[38] Therefore, this vascular change allows nanoparticles to accumulate at the infection sites via the EPR effect. Particularly, the EPR effect lay the basis for the selective distribution of nanoparticles in bacterial infection, which can increase efficacy and reduce systemic side effects of conventional antimicrobials.

Acidic Environment

An acidic environment exists in a biofilm, in which the pH value in a biofilm may reach 4.5 or even lower.[43] For example, the metabolic activity of acidogenic/acid-tolerant oral bacteria can result in an acidic microenvironment.[44] The anaerobic fermentation of certain microbes, such as Staphylococcus aureus (S. aureus) or Streptococcus mutans (S. mutans), can produce and accumulate organic acids in biofilms, leading to an acidic environment.[45] Besides, bacterial infections can induce phagocytosis, during which, the inflammatory cells release lactic acid, lowering the pH at infection sites.[46] The low pH at infection sites is different from the physiological pH of 7.4, which can provide implications for the determination and treatment of bacterial infection.

In principle, several chemical groups can transform between protonation and de-protonation when the pH varies around their pKa values, such as amines, carboxylates and sulfonic groups.[47] In the meantime, the solubility of these chemical groups will change drastically, ultimately leading to the phase change of the bulk materials. Therefore, this property can be used to design pH-responsive nanomaterials for various purposes.[45]

Oxygen Gradients

The EPS matrix in biofilm leads to the creation of physio-chemical heterogeneities, for example, nutrient and oxygen gradients.[48] The oxygen gradient in a biofilm is attributed to the fact that bacteria in the superficial layers of the biofilm consume oxygen at a rate faster than the diffusion of oxygen, leading to the formation of hypoxia in the bottom layers of a biofilm.[49] This oxygen gradient and local hypoxia are of great importance to the metabolism, virulence, and drug resistance of bacteria.[5] Besides, the local hypoxia of a biofilm implicates the possibility of delivering and releasing antibiotics in an “on-demand” manner. The commonly used hypoxia-responsive moieties include azo crosslinkers, nitroimidazoles, and nitrobenzyl alcohols (Fig. 1).[50] In most cases, they undergo a hydrophobic-to-hydrophilic transition once being reduced under the hypoxia conditions. Those moieties have been extensively applied to design/construct controlled release systems in cancer therapy and immunotherapy.[51] Whereas, the application of hypoxia-responsive systems in combating bacteria-associated infections is still in its infancy. Besides, the oxygen-loaded nanocarriers can relieve the biofilm hypoxia to a certain extent.[52]

Enzymes

Like hypoxia, bacterial enzymes also play crucial roles in the metabolism, biological process, virulence, and drug resistance of bacteria.[53] There are several over-expressed enzymes at the infection sites, such as β-galactosidases,[54] alkaline phosphatases,[29,55] nitroreductases,[56] proteinases,[57] lipases,[58] phospholipases,[59] toxins,[60,61] and hyaluronidases.[62] These enzymes can degrade/hydrolyze specific chemical structures, potentiating their applications in drug delivery.[47]

Reactive Oxygen Species (ROS)

At the infection sites, the infiltrating immune cells produce an increased amount of ROS, such as hydrogen peroxide (H2O2), superoxide (O2), hypochlorite (OCl), etc. to eradicate the invaded bacteria.[63-65] Therefore, infection sites are often enriched with ROS that can be used to determine and eradicate bacterial infections. In this regard, numerous ROS-responsive systems have been investigated for diverse applications,[65-67] while their application in eradicating bacteria- or biofilm-associated infections remains largely undeveloped.

PREVENTION OF BIOFILM FORMATION

Bacteria need to adhere to the surface of tissues or implants and to initiate the growth of biofilms thereafter.[68,69] Therefore, the easiest and most convenient way to avoid biofilm-associated infections is to prevent biofilm formation. In general, there are two major approaches to prevent bacterial adhesion and subsequent formation of biofilms on a surface, namely to “attack” or to “defend”.[70] The “attack” strategy is to kill the bacteria using antibiotics or antimicrobial cationic polymers,[71-73] since the cell membranes of bacteria are negatively charged because of the ample anionic lipids, like phosphatidylglycerols and cardiolipins.[74] However, the dead bacteria will remain on these surfaces, which can trigger the immune response and induce side effects such as inflammation and sepsis. In the meanwhile, the “defend” strategy is to form a non-fouling surface using polymers such as poly(ethylene glycol) (PEG) and zwitterionic polymers.[75,76] In particular, these polymers can form a hydration periphery that can largely avoid the interactions of bacteria with the surface of a substratum. Of note, some recent developments realize the design of multifunctional surfaces. For example, zwitterionic surfaces formed by an equal amount of quaternary ammonium and carboxyl groups were able to achieve the “attract-and-release” of bacteria.[76,77] The zwitterionic surface is positively charged at pH below 4.5 due to the partial protonation of carboxyl groups, enabling the attraction of bacteria. While under neutral and basic conditions, the zwitterionic surface becomes neutral owing to the deprotonation of acids. Thus, the attenuated interaction between surface and bacteria leads to the release of the captured bacteria.[77] However, the pH variation only allows the switch of surfaces from bacteria-adhesive to bacteria-resistant, and the surfaces do not induce the lysis of bacterial cells. Subsequently, Jiang et al. developed a surface modified with ester-containing quaternary ammoniums to achieve the “kill-and-release” property.[78] The antibacterial surface possessed a strong positive charge that kills the attached bacteria by damaging the bacteria cell membrane. In the meantime, the released esterases from the killed bacteria could hydrolyze the ester groups, leading to the formation of a zwitterionic and non-fouling surface that liberates the dead bacteria.[78] However, the hydrolysis of ester groups is not reversible, and the surface cannot turn back its “kill” state to maintain its non-fouling nature. To solve this problem, in their subsequent study, a surface capable of switching between attacking and defending functions was developed. The surfaces can transform the cationic N,N-dimethyl-2-morpholinone into the zwitterionic carboxy betaine under the trigger of bacterial enzyme-triggered hydrolysis.[70]

Apart from the chemical modification of surfaces to prevent bacterial adhesion, the roughness and topography of substrate surfaces also influence bacterial adhesion, as reviewed elsewhere.[79,80] Polymer-based nanoparticles, such as nanogels, can form the antifouling nanogel coating on the surface of a substratum to reduce bacterial attachment via its unique topography and stiffness, as well as hydration property.[81] For example, poly(N-isopropylmetacrylamide) (pNIPMAM) nanogel coatings were used to prevent the adhesion of bacteria and subsequently prevent the formation of biofilms.[82] However, in most cases, only repelling the bacterial attachment is not enough to prevent the formation of biofilms.[83] To address this issue, antimicrobials are applied as additives to enhance the bactericidal efficacy and the ability to prevent biofilm formation. Antimicrobials can be loaded, chemically conjugated, or coordinated into the polymeric hydration layer or nanogels that coat on a surface. For example, Xu et al. designed porous hydroxyapatite (HA) implants functionalized via ethylenediamine-modified poly(glycidyl methacrylate) brushes, which further conjugated gentamicin sulfate (GS), yielding the antibacterial HA implants (HA-GS).[84] The local acidic microenvironment can trigger the release of GS via the hydrolysis of the acid-sensitive linkers between GS and polymer brushes. HA-GS exhibited excellent anti-infection activity in vivo in an infected bone defect rabbit model. Taken together, all the above-mentioned strategies provide powerful arsenals for preventing bacterial adhesion and subsequent biofilm formation.

BIOFILM ERADICATION

Besides preventing biofilm formation, eradicating the established biofilm is also a huge task. There are two main strategies to eradicate biofilm. On the one hand, polymer nanosystems can be used as carriers for traditional antibiotics or serve as nano-antibiotics to kill bacteria in biofilms. On the other hand, polymer nanoparticles can be used as biofilm dispersants to destroy the architectures of biofilms, making the remaining bacterial more susceptible to other antibacterial therapies, such as antibiotics. In this section, recent developments of polymer-based materials that have been applied in eradicating mature bacterial biofilms will be discussed.

Antibiotics Delivery Systems

Free antibiotics are easily cleared through blood circulation via renal filtration or inactivated by the various enzymes in tissues such as livers. Furthermore, as we mentioned above, the penetration of free antibiotics in biofilms is remarkably poor, greatly attenuating the anti-biofilm efficacy of antibiotic regimens and resulting in serious side effects. To solve this problem, conventional antibiotics can be loaded in polymeric nanoparticles. The drug-encapsulated polymeric systems possess the following advantages. First, after being encapsulated, conventional antibiotics are temporarily protected by the polymeric peripheries, thereby enhancing the stability and biocompatibility of antibiotics during blood circulation. Besides, certain polymeric carriers can respond to the bacterial infection microenvironments and target the infection sites. Moreover, with rational design, polymeric carriers can enhance the penetration of antibiotics in biofilms, and release their cargoes to eradicate the biofilms in an on-demand manner. Both hydrophilic and hydrophobic antibiotics can be loaded by choosing different polymer systems.

Loading hydrophobic antibiotics

The most prevalent polymeric nanocarriers for hydrophobic antibiotics are polymeric micelles. In recent years, our group have made a lot of efforts to research polymer assembly behavior and its applications.[85-91] In particular, polymeric micelles are core-shell-structured nano-assemblies that self-assembled from amphiphilic copolymers. Therefore, the hydrophobic cores of polymeric micelles are the ideal containers for hydrophobic antibiotics, such as triclosan,[92] curcumin,[93] isoniazid,[94] and bedaquiline.[95] There are several approaches for the preparation of the hydrophobic antimicrobial-loaded polymeric micelles, which have been reviewed elsewhere.[16,47] This is not the subject of our article. We merely focus on the utility of polymeric micelles in overcoming the physical barrier of biofilm during antibiotic treatments. For example, triclosan could be loaded in mixed-shell-polymeric-micelles (MSPMs), which are self-assembled from two diblock copolymers, namely poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) and poly(ε-caprolactone)-block-poly(β-amino ester) (PCL-b-PAE) (Fig. 2).[92] The shells of MSPMs are formed by the hydrophilic PEG and the pH-responsive PAE,[96] while PCL forms the lipase-sensitive micelle core that can encapsulate hydrophobic triclosan. The mixed shell allows the stability and long circulation of MSPMs, since the PAE block is negatively charged and hydrophobic under normal physiological pH 7.4, and the whole micelles were stabilized by the PEG shell.[92] Once being exposed to the acidic microenvironment of infection sites, the PAE block would be protonated and become hydrophilic and positively charged, enhancing their interactions with the negatively charged bacteria in biofilms through electrostatic attractions. Upon the deep penetration of the drug-loaded MSPMs in biofilms, the micellar cores would be hydrolyzed by the bacterial lipases, releasing the loaded triclosan to kill the bacteria embedded in biofilms. In contrast, non-loaded triclosan and the triclosan encapsulated in single-shell-polymeric-micelles (SSPMs) consisting of only PEG-b-PCL exhibited poor biofilm eradication efficacy. This study renders an efficient pathway to overcome the biofilm barrier.

2
Schematic illustration of the process of triclosan-loaded MSPMs in eradicating bacterial biofilms. (A) Free triclosan is less likely to penetrate biofilms. (B) SSPMs can assist the penetration of triclosan in biofilms, while they cannot interact with EPS matrixes of biofilms. (C) MSPMs allow the full penetration of biofilms and kill most of the embedded bacteria in biofilms. (D) The charge conversion PAE in MSPMs upon the switch of pH and bacterial lipase-triggered micelle core degradation and triclosan release. (Reproduced with permission from Ref. [92]; Copyright (2016) American Chemical Society.)
pic

Subsequently, we used MSPMs to encapsulate protoporphyrin IX (PpIX), a photosensitizer that produces singlet oxygen using tissue oxygen under light irradiation, for biofilm eradication. Our MSPMs greatly enhanced the penetration of the hydrophobic PpIX in biofilms and the ability to produce singlet oxygen thereafter.[97] Since singlet oxygen induces bacterial lysis using its oxidative stress on bacterial lipids and biomacromolecules, bacteria are less likely resistant to this mechanism. Therefore, these photosensitizer-based bactericidal systems are ready to be applied in combating biofilms constructed from drug-resistant bacteria.

The above-mentioned antibiotics are loaded into nanocarriers expediently through hydrophobic interactions, which are weak and usually cannot prevent the drug premature leakage during storage and blood circulation.[98,99] Conjugating antibiotics in polymers, also named as polyprodrug, is a promising option to circumvent this problem. For instance, we conjugated triclosan onto a PEG-b-PAE block polymer via ester bonds. The triclosan-conjugated PEG-b-PAE forms stable polymeric micelles in water and possesses PEG shells that enable long blood circulation after being injected.[100] Triclosan is less likely to be released during blood circulation due to its chemical conjugation. While the PAE domain can be protonated at lower pH in a biofilm, facilitating the interactions between micelles and biofilm matrix and allowing the retention of micelles inside biofilms. The local bacterial lipases triggered the triclosan release to eradicate the biofilm-bacteria (Fig. 3).[100] PEG-PAE-Triclosan micelles could not only eradicate subcutaneous drug-resistant S. aureus infection in mice but also preferentially kill cariogenic oral pathogen S. mutans that secrete lipases in oral biofilms.

3
Schematic illustration of (A) the synthetic route of PEG-PAE-Triclosan, (B) self-assembly, pH-adaptiveness of PEG-PAE-Triclosan micelles, and lipase-triggered Triclosan release and bacterial killing. (Reproduced with permission from Ref. [100]; Copyright (2018) Elsevier.)
pic
Loading hydrophilic antibiotics

Most of the commonly used antibiotics are hydrophilic because hydrophilic ones are more easily administered via oral or injection pathways. However, free hydrophilic antibiotics often suffer from shortcomings such as short blood retention, poor biodistribution, poor biofilm penetration, and potential side effects. To avoid these defects, diverse drug carriers such as hydrogels[101-109] and vesicles[110] have been developed. To be more specific, the focus of this section is the polymer-based delivery systems for hydrophilic antibiotics.

Among the polymer-based delivery systems for hydrophilic antibiotics, polymeric vesicles are of great importance. Just like polymeric micelles, polymeric vesicles are also assembled from amphiphilic copolymers. Notably, the difference is that the proportion of the hydrophobic domains in the amphiphilic copolymers used to construct polymeric vesicles is greater than that of copolymers used to build polymeric micelles. Compared to vesicles made of lipids, polymeric vesicles are usually more stable against the continuous dilution in the blood. Generally, the cores of the as-prepared polymeric vesicles are hydrophilic and the intermediate layers are hydrophobic. Thus, hydrophilic antibiotics are allowed to be loaded in the cores of polymeric vesicles, and hydrophobic antibiotics can be loaded in the intermediate layers at the same time. As a consequence, a great number of antibiotics could be loaded in vesicles, such as amikacin,[111] gentamicin,[111,112] tobramycin,[113-115] vancomycin,[116,117] azithromycin,[118] metronidazole,[119] oxacillin,[120] daptomycin,[121] doxycycline,[122] and antimicrobial peptides.[123] It is worth noting that the bilayer of vesicles can fuse with the structure of bacterial cell membranes, leading to plenty of antibiotics releasing once inside the biofilm.[110,124] However, different from the inhomogeneous features of bio-membranes, conventional synthetic polymer vesicles usually possess a homogeneous membrane, which significantly limited their versatility. Recently, Du et al. reviewed the recent advances and the future perspectives of design principles, synthesis, and biomedical applications of polymer vesicles with inhomogeneous membranes, which endow the vesicle with multi-functionality for various applications including drug delivery.[125] For example, Du et al. designed a multifunctional ciprofloxacin-loaded dual corona vesicle with intrinsic antibacterial activity for effective eradication of biofilm, which was made of two block copolymers, namely poly(ε-caprolactone)-block-poly(lysine-stat-phenylalanine) [PCL-b-P(Lys-stat-Phe)] and poly(ethylene oxide)-block-poly(ε-caprolactone) [PEO-b-PCL] (Fig. 4).[126] Similar to PEG, the stealthy property of PEO made vesicles repel the protein during blood circulation, and P(Lys-stat-Phe) enabied vesicles with positive charges, endowing them with targeting ability and bacterial membrane damaging ability.[126] After being encapsulated in vesicles, the dosage of ciprofloxacin could be reduced by 50% for the eradication of biofilms. Therefore, this work rendered an efficient approach to overcoming the biofilm barrier using polymeric vesicles.

4
Schematic illustration of the chemical structures of the copolymers used and procedure to construct the antibiotic-loaded dual corona vesicle, as well as the mechanism in treating periodontitis biofilms. (Reproduced with permission from Ref. [126]; Copyright (2019) American Chemical Society.)
pic

Besides, hydrophilic antimicrobials can be conjugated in polymers and applied as a prodrug as well. For example, Ji et al. conjugated azithromycin on amino-ended poly(amidoamine) dendrimer (PAMAM) as a prodrug (PAMAM-AZM NPs) and subsequently assembled them with 2,3-dimethyl maleic anhydride (DA) modified poly(ethylene glycol)-block-polylysine (PEG-b-PLys) to form nanoparticles (AZM-DA NPs) through electrostatic complexation (Fig. 5).[127] At low pH in a biofilm, the amide bond between PEG-b-Plys and DA is hydrolyzed and the positive net charge of the Plys domain is recovered, resulting in the dissociation of AZM-DA NPs and the release of PAMAM-AZM NPs. With a small size and positive charge, PAMAM-AZM NPs can penetrate and accumulate inside biofilms, exhibiting excellent antibiofilm activity. This research is promising for the treatment of biofilm-caused chronic infections.

5
Scheme illustration of (A) reaction of DA modified PEG-b-PLys at low pH; (B) the assembly and dissociation of AZM-DA NPs under different pH conditions; (C) the mechanisms of AZM-DA NPs in eradication biofilm infection. (Reproduced with permission from Ref. [127]; Copyright (2020) American Chemical Society.)
pic
Antimicrobial Nanosystems

Although many antibiotics delivery systems have been investigated and great progress has been made, polymeric systems with intrinsic bactericidal activities are still urgently needed. In nature, antimicrobial peptides (AMPs) exhibit excellent antibacterial activities.[128-133] Most AMPs are amphiphilic and possess cationic and hydrophobic moieties. Besides, they often possess an α-helical or β-sheet-like tubular secondary confirmation. Once interact with bacteria, the cationic moiety attracts negatively charged bacteria, and the hydrophobic moiety inserts into the lipophilic cell membrane domain, rupturing the cell membrane of bacteria.[134] This physical damage antibacterial mechanism is less likely to develop resistance.[135] Though AMPs are promising antimicrobials, low stability, high toxicity and expensive production limit their antibacterial application. To overcome these drawbacks, synthetic polymeric AMP mimics have been developed because of their facial synthesis with the key properties of AMPs.[22-25,135,136] Basically, these AMP mimics bearing positively charged domains such as primary amines, ammoniums, guanidiniums, thiazoliums, triazoliums, and phosphoniums on either main-chains or side-chains.[137] Also, they usually possess a rigid spatial configuration that regulates their bactericidal efficacy.[138] In certain cases, the secondary structures of the synthetic AMP mimics are transitionable under the trigger of stimuli. For example, Cheng et al. developed series of AMPs that could realize helix-coil conformation transition for regulating the antibacterial efficacy versus the cell lysis property of the polymers.[30,139,140] Moreover, synthetic AMP polymers can assemble into antimicrobials nanoparticles, thus increasing the local concentration of AMPs. Qiao et al. developed the synthesis of structurally nanoengineered antimicrobial peptide polymers (SNAPPs), which were unimolecular, forming star nanoparticles.[135] These SNAPPs showed superior antibacterial activity with several different antimicrobial mechanisms. Compared to the unimolecular AMPs, these nano-antimicrobials might be more stable during blood circulation and have greater biofilm penetration ability. Together with their multivalentcy effect, these nanoscale antimicrobials usually possess enhanced antibacterial activity.

Biofilm Dispersal

In a biofilm, the EPS matrix holds the embedded bacteria together like glue and limits the penetration of antibiotics. Therefore, dispersing the biofilm is another way to combat biofilm-related infections. In recent years, many kinds of molecular biofilm dispersants have been reported,[141-143] such as enzymes,[144-146] ROS,[147-150] nitric oxide (NO),[151] peptides,[152-155] molecules that regulate signaling pathways,[156,157] amino acids,[158] and biosurfactants.[159,160] But these molecular biofilm dispersants have disadvantages, limiting their applications. For example, DNase is easily inactivated by many factors, such as low pH and proteinases. Also, natural peptides are prone to be proteolyzed. Additionally, there were no beneficial effects of NO observed in vivo experiments because of the metabolic consumption.[161] The cytotoxicity of some dispersants has not been investigated. Fortunately, a combination of biofilm dispersants with nanoparticles can enhance their efficiency yet ameliorate their adverse effects.

After being loaded in polymer nanoparticles, the dispersants are protected in blood circulation,[162] and their stability is improved.[163] Also, with rational design, the loaded cargoes could be released in response to stimuli.[164-167] For example, when dispersion B was loaded with chitosan nanoparticles, the thermal stability and storage time were greatly improved.[168] Apart from encapsulation, the dispersants can be decorated on the surfaces of nanoparticles. For example, DNase I could be conjugated on the amino groups of chitosan nanoparticles.[169] Antimicrobials are often co-administered with these nano-dispersants to achieve desirable biofilm eradication efficacy. For example, ciprofloxacin was co-loaded into the DNase I-modified nanoparticles, and the simultaneous release of both DNase I and ciprofloxacin synergistically enhanced the biofilm eradication efficacy.

Besides, some polymer nanoparticles possess an intrinsic biofilm-dispersal property. Most of these biofilm-dispersal nanoparticles are cationic micelles or peptides because of their strong interactions with the negative bacteria and EPS.[170] However, the positive charge makes them easily cleared during blood circulation and has cytotoxicity to healthy cells.[171] Recently, we designed self-targeting zwitterionic MSPM (ZW-MSPM), which were self-assembled from PEG-b-PCL and poly(ε-caprolactone)-block-poly(quaternary-amino-ester) to address the above-mentioned issue.[172] Zwitterionic micelles are negatively charged at physiological conditions (pH 7.4) but transformed to a positive charge at low pH in a bacterial biofilm. This property endows the micelles with targeting ability in vivo. And the positive charge facilitates the micelles to penetrate and accumulate in biofilms, and subsequently disperse the biofilm. The in vivo efficacy of ZW-MSPM was observed in mice by growing staphylococcal biofilm underneath an intravital abdominal imaging window (AIW) (Fig. 6).[172]

6
Scheme illustration of (A) workflow of AIW model construction and treatment in mice. (B) 3D intravital images of biofilms during the different treatment periods. (C) The thickness of staphylococcal biofilms. (D) The biomass of staphylococcal biofilms. (E) The number of S. aureus CFUs after 5-day treatments. (Reproduced with permission from Ref. [172]; Copyright (2021) Science.)
pic

To address the issue of delivering gaseous biofilm dispersants, Ji et al. developed a NO delivery system for the eradication of biofilms.[173] In this work, NO was conjugated on glutathione-responsive α-cyclodextrin (α-CD) as a prodrug, and integrated into a pH-sensitive block polypeptide copolymer together with α-CD-chlorin e6, forming supramolecular nanocarrier. Once inside biofilms, NO was rapidly released stimulated by the overexpressed glutathione in biofilms, which could synergistically eradicate biofilm with photodynamic therapy. This strategy may offer great possibilities for the eradication of biofilm-associated infections.

CONCLUSIONS AND FUTURE PERSPECTIVES

Biofilm-associated infections are posing a great threat to global human health. The demand and requirements for new antibiotic regimens remain largely unmet. The recent developments of polymer-based nanomaterials are of great potential in addressing the above-mentioned issues. Polymer-based nanosystems have been used to prevent bacterial adhesion and subsequent biofilm formation, as well as to eradicate the mature biofilms. Although polymer-based nanosystems possess numerous advantages, in our opinion, more efforts should be made on the following prospects:

(1) Polymer synthesis and characterizations. Until now, it is still quite challenging to synthesize polymers with exact molecular weights or with a narrow distribution. Besides, the synthesized polymers often differ in molecular weights and even chemical properties from batch to batch. Most of the synthesized polymers were characterized via nuclear magnetic resonance spectra and gel permeation chromatography measurements, etc, which, to some extent, are not enough to illustrate the chemical structures and properties due to the limitation of the apparatuses used. For example, the peaks of polymers in their NMR spectra are quite broad and the signal will be low if the polymers are not completely soluble.

(2) Currently, most of the polymeric nano-assemblies are formed by the driving forces of electrostatic attraction or hydrophobic interaction, which cannot fully prevent drug leakage during storage or circulation in the blood. Some strategies like cross-linking should be applied to reinforce the stability of nano-assemblies.[174]

(3) At present, most nanomaterials elucidated their antibacterial activity on biofilms that grow for 1 or 2 days. However, in clinical, the pathogenetic biofilms are formed over a long period with multiple bacterial species. Therefore, the anti-biofilm efficacy of the polymer-based materials should be evaluated on old biofilms that are more similar to real clinical situations in the future.

(4) Moreover, bacteria can also grow in mammalian cells. Most antibiotics cannot penetrate the mammalian cell membranes to eradicate these intracellular pathogens, causing chronic infections. Hence, nanosystems capable of targeting penetrate and across infected cell membranes should be taken into consideration. For example, our group recently have reported a macrophage membrane-coated antimicrobial nanoparticle, which could selectively enter into infected macrophages and wipe out the intracellular bacteria.[175]

(5) Despite many nanosystems have improved the efficiency of antibiotics, it is still at risk of developing drug resistance. Future infection control strategies should concentrate more on non-antibiotic-containing systems, such as photodynamic therapy, photothermal therapy, and systems based on cascade reactions.[176]

BIOGRAPHY

Yong Liu obtained his PhD degree from Nankai University, Tianjin, China, in 2016 under the supervision of Prof. Linqi Shi, majoring in polymer chemistry and physics. After that, he joined the Department of Biomedical Engineering at the University Medical Center Groningen/University of Groningen, the Netherlands, to work on novel nanotechnology-based infection control strategies. In 2019, he was an associate professor at FUNSOM, Soochow University. He joined Wenzhou Institute, University of Chinese Academy of Sciences in 2021. Currently, his research interest is focused on using polymer-based materials to control the emergence of multidrug resistance in microbes.

Lin-Qi Shi received his PhD from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China (1993). He is currently a full professor at the Institute of Polymer Chemistry, Nankai University, Tianjin, China. His research involves polymerization, self-assembly of block copolymers and polymeric nanocarriers for biomedical applications. He has over 240 peer-reviewed publications in polymer science and has been awarded an Excellent Professor Award by the Ministry of Education, China (2002). He was one of the Distinguished Young Scholars financed by the National Natural Science Foundation of China (2006).

References
1 Howard, S. J.; Hopwood, S.; Davies, S. C.

Antimicrobial resistance: a global challenge

Sci. Transl. Med. 2014 6 236ed10 10.1126/scitranslmed.3009315

Howard, S. J.; Hopwood, S.; Davies, S. C. Antimicrobial resistance: a global challenge. Sci. Transl. Med. 2014, 6, 236ed10.

Baidu ScholarGoogle Scholar
2

3 Davies, D.

Understanding biofilm resistance to antibacterial agents

Nat. Rev. Drug Discov. 2003 2 114 122 10.1038/nrd1008

Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114−122.

Baidu ScholarGoogle Scholar
4 Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P.

Bacterial biofilms: from the natural environment to infectious diseases

Nat. Rev. Microbiol. 2004 2 95 108 10.1038/nrmicro821

Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95−108.

Baidu ScholarGoogle Scholar
5 Flemming, H. C.; Wingender, J.

The biofilm matrix

Nat. Rev. Microbiol. 2010 8 623 633 10.1038/nrmicro2415

Flemming, H. C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623−633.

Baidu ScholarGoogle Scholar
6 Van Acker, H.; Coenye, T.

The role of efflux and physiological adaptation in biofilm tolerance and resistance

J. Biol. Chem. 2016 291 12565 12572 10.1074/jbc.R115.707257

Van Acker, H.; Coenye, T. The role of efflux and physiological adaptation in biofilm tolerance and resistance. J. Biol. Chem. 2016, 291, 12565−12572.

Baidu ScholarGoogle Scholar
7 Ramirez, M. S.; Tolmasky, M. E.

Aminoglycoside modifying enzymes

Drug Resistance Update. 2010 13 151 171 10.1016/j.drup.2010.08.003

Ramirez, M. S.; Tolmasky, M. E. Aminoglycoside modifying enzymes. Drug Resistance Update. 2010, 13, 151−171.

Baidu ScholarGoogle Scholar
8 Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O.

Antibiotic resistance of bacterial biofilms

Int. J. Antimicrob. Agents. 2010 35 322 332 10.1016/j.ijantimicag.2009.12.011

Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents. 2010, 35, 322−332.

Baidu ScholarGoogle Scholar
9 Piddock, L. J. V.

The crisis of no new antibiotics-what is the way forward?

Lancet Infect. Dis. 2012 12 249 253 10.1016/S1473-3099(11)70316-4

Piddock, L. J. V. The crisis of no new antibiotics-what is the way forward? Lancet Infect. Dis. 2012, 12, 249−253.

Baidu ScholarGoogle Scholar
10 Liu, Y.; Shi, L.; Su, L.; van der Mei, H. C.; Jutte, P. C.; Ren, Y.; Busscher, H. J.

Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control

Chem. Soc. Rev. 2019 48 428 446 10.1039/C7CS00807D

Liu, Y.; Shi, L.; Su, L.; van der Mei, H. C.; Jutte, P. C.; Ren, Y.; Busscher, H. J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 2019, 48, 428−446.

Baidu ScholarGoogle Scholar
11 Zheng, C, X.; Zhao, Y.; Liu, Y.

Recent advances in self-assembled nano-therapeutics

Chinese J. Polym. Sci. 2018 36 322 346 10.1007/s10118-018-2078-y

Zheng, C, X.; Zhao, Y.; Liu, Y. Recent advances in self-assembled nano-therapeutics. Chinese J. Polym. Sci. 2018, 36, 322−346.

Baidu ScholarGoogle Scholar
12 Matyjaszewski, K.; Tsarevsky, N. V.

Macromolecular engineering by atom transfer radical polymerization

J. Am. Chem. Soc. 2014 136 6513 6533 10.1021/ja408069v

Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 6513−6533.

Baidu ScholarGoogle Scholar
13 Xu, F. J.; Yang, W. T.

Polymer vectors via controlled/living radical polymerization for gene delivery

Prog. Polym. Sci. 2011 36 1099 1131 10.1016/j.progpolymsci.2010.11.005

Xu, F. J.; Yang, W. T. Polymer vectors via controlled/living radical polymerization for gene delivery. Prog. Polym. Sci. 2011, 36, 1099−1131.

Baidu ScholarGoogle Scholar
14 Lutz, J. F.; Neugebauer, D.; Matyjaszewski, K.

Stereoblock copolymers and tacticity control in controlled/living radical polymerization

J. Am. Chem. Soc. 2003 125 6986 6993 10.1021/ja029517w

Lutz, J. F.; Neugebauer, D.; Matyjaszewski, K. Stereoblock copolymers and tacticity control in controlled/living radical polymerization. J. Am. Chem. Soc. 2003, 125, 6986−6993.

Baidu ScholarGoogle Scholar
15 Wu, Y. M.; Zhang, W. W.; Zhou, R. Y.; Chen, Q.; Xie, C. Y.; Xiang, H. X.; Sun, B.; Zhu, M. F.; Liu, R. H.

Facile synthesis of high molecular weight polypeptides via fast and moisture insensitive polymerization of α-amino acid n-carboxyanhydrides

Chinese J. Polym. Sci. 2020 38 1131 1140 10.1007/s10118-020-2471-1

Wu, Y. M.; Zhang, W. W.; Zhou, R. Y.; Chen, Q.; Xie, C. Y.; Xiang, H. X.; Sun, B.; Zhu, M. F.; Liu, R. H. Facile synthesis of high molecular weight polypeptides via fast and moisture insensitive polymerization of α-amino acid n-carboxyanhydrides. Chinese J. Polym. Sci. 2020, 38, 1131−1140.

Baidu ScholarGoogle Scholar
16 Ding, X.; Wang, A.; Tong, W.; Xu, F. J.

Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria

Small 2019 15 e1900999 10.1002/smll.201900999

Ding, X.; Wang, A.; Tong, W.; Xu, F. J. Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria. Small 2019, 15, e1900999.

Baidu ScholarGoogle Scholar
17 Chin, W.; Yang, C. A.; Ng, V. W. L.; Huang, Y.; Cheng, J. C.; Tong, Y. W.; Coady, D. J.; Fan, W. M.; Hedrick, J. L.; Yang, Y. Y.

Biodegradable broad-spectrum antimicrobial polycarbonates: investigating the role of chemical structure on activity and selectivity

Macromolecules 2013 46 8797 8807 10.1021/ma4019685

Chin, W.; Yang, C. A.; Ng, V. W. L.; Huang, Y.; Cheng, J. C.; Tong, Y. W.; Coady, D. J.; Fan, W. M.; Hedrick, J. L.; Yang, Y. Y. Biodegradable broad-spectrum antimicrobial polycarbonates: investigating the role of chemical structure on activity and selectivity. Macromolecules 2013, 46, 8797−8807.

Baidu ScholarGoogle Scholar
18 Gupta, A.; Landis, R. F.; Li, C. H.; Schnurr, M.; Das, R.; Lee, Y. W.; Yazdani, M.; Liu, Y.; Kozlova, A.; Rotello, V. M.

Engineered polymer nanoparticles with unprecedented antimicrobial efficacy and therapeutic indices against multidrug-resistant bacteria and biofilms

J. Am. Chem. Soc. 2018 140 12137 12143 10.1021/jacs.8b06961

Gupta, A.; Landis, R. F.; Li, C. H.; Schnurr, M.; Das, R.; Lee, Y. W.; Yazdani, M.; Liu, Y.; Kozlova, A.; Rotello, V. M. Engineered polymer nanoparticles with unprecedented antimicrobial efficacy and therapeutic indices against multidrug-resistant bacteria and biofilms. J. Am. Chem. Soc. 2018, 140, 12137−12143.

Baidu ScholarGoogle Scholar
19 Pu, Y. J.; Hou, Z.; Khin, M. M.; Zamudio-Vazquez, R.; Poon, K. L.; Duan, H. W.; Chan-Park, M. B.

Synthesis and antibacterial study of sulfobetaine/quaternary ammonium-modified star-shaped poly[2-(dimethylamino)ethyl methacrylate]-based copolymers with an inorganic core

Biomacromolecules 2017 18 44 55 10.1021/acs.biomac.6b01279

Pu, Y. J.; Hou, Z.; Khin, M. M.; Zamudio-Vazquez, R.; Poon, K. L.; Duan, H. W.; Chan-Park, M. B. Synthesis and antibacterial study of sulfobetaine/quaternary ammonium-modified star-shaped poly[2-(dimethylamino)ethyl methacrylate]-based copolymers with an inorganic core. Biomacromolecules 2017, 18, 44−55.

Baidu ScholarGoogle Scholar
20 Tan, J. P. K.; Coady, D. J.; Sardon, H.; Yuen, A.; Gao, S. J.; Lim, S. W.; Liang, Z. C.; Tan, E. W.; Venkataraman, S.; Engler, A. C.; Fevre, M.; Ono, R.; Yang, Y. Y.; Hedrick, J. L.

Broad spectrum macromolecular antimicrobials with biofilm disruption capability and in vivo efficacy

Adv. Healthc. Mater. 2017 6 1601420 10.1002/adhm.201601420

Tan, J. P. K.; Coady, D. J.; Sardon, H.; Yuen, A.; Gao, S. J.; Lim, S. W.; Liang, Z. C.; Tan, E. W.; Venkataraman, S.; Engler, A. C.; Fevre, M.; Ono, R.; Yang, Y. Y.; Hedrick, J. L. Broad spectrum macromolecular antimicrobials with biofilm disruption capability and in vivo efficacy. Adv. Healthc. Mater. 2017, 6, 1601420.

Baidu ScholarGoogle Scholar
21 Patel, M.; Patel, R.; Chi, W. S.; Kim, J. H.; Sung, J. S.

Antibacterial behaviour of quaternized poly(vinyl chloride)-g-poly(4-vinyl pyridine) graft copolymers

Chinese J. Polym. Sci. 2015 33 265 274 10.1007/s10118-015-1577-3

Patel, M.; Patel, R.; Chi, W. S.; Kim, J. H.; Sung, J. S. Antibacterial behaviour of quaternized poly(vinyl chloride)-g-poly(4-vinyl pyridine) graft copolymers. Chinese J. Polym. Sci. 2015, 33, 265−274.

Baidu ScholarGoogle Scholar
22 Wang, M.; Zhou, C.; Chen, J.; Xiao, Y.; Du, J.

Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities

Bioconjug. Chem. 2015 26 725 734 10.1021/acs.bioconjchem.5b00061

Wang, M.; Zhou, C.; Chen, J.; Xiao, Y.; Du, J. Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities. Bioconjug. Chem. 2015, 26, 725−734.

Baidu ScholarGoogle Scholar
23 Xi, Y.; Song, T.; Tang, S.; Wang, N.; Du, J.

Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities

Biomacromolecules 2016 17 3922 3930 10.1021/acs.biomac.6b01285

Xi, Y.; Song, T.; Tang, S.; Wang, N.; Du, J. Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities. Biomacromolecules 2016, 17, 3922−3930.

Baidu ScholarGoogle Scholar
24 Takahashi, H.; Nadres, E. T.; Kuroda, K.

Cationic amphiphilic polymers with antimicrobial activity for oral care applications: eradication of S. mutans biofilm

Biomacromolecules 2017 18 257 265 10.1021/acs.biomac.6b01598

Takahashi, H.; Nadres, E. T.; Kuroda, K. Cationic amphiphilic polymers with antimicrobial activity for oral care applications: eradication of S. mutans biofilm. Biomacromolecules 2017, 18, 257−265.

Baidu ScholarGoogle Scholar
25 Nimmagadda, A.; Liu, X.; Teng, P.; Su, M.; Li, Y.; Qiao, Q.; Khadka, N. K.; Sun, X.; Pan, J.; Xu, H.; Li, Q.; Cai, J.

Polycarbonates with potent and selective antimicrobial activity toward gram-positive bacteria

Biomacromolecules 2017 18 87 95 10.1021/acs.biomac.6b01385

Nimmagadda, A.; Liu, X.; Teng, P.; Su, M.; Li, Y.; Qiao, Q.; Khadka, N. K.; Sun, X.; Pan, J.; Xu, H.; Li, Q.; Cai, J. Polycarbonates with potent and selective antimicrobial activity toward gram-positive bacteria. Biomacromolecules 2017, 18, 87−95.

Baidu ScholarGoogle Scholar
26 Zou, Y. J.; He, S. S.; Du, J. Z.

ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities

Chinese J. Polym. Sci. 2018 36 1239 1250 10.1007/s10118-018-2156-1

Zou, Y. J.; He, S. S.; Du, J. Z. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci. 2018, 36, 1239−1250.

Baidu ScholarGoogle Scholar
27 Xia, G. X.; Wu, Y. M.; Bi, Y. F.; Chen, K.; Zhang, W. W.; Liu, S. Q.; Zhang, W. J.; Liu, R. H.

Antimicrobial properties and application of polysaccharides and their derivatives

Chinese J. Polym. Sci. 2021 39 133 146 10.1007/s10118-021-2506-2

Xia, G. X.; Wu, Y. M.; Bi, Y. F.; Chen, K.; Zhang, W. W.; Liu, S. Q.; Zhang, W. J.; Liu, R. H. Antimicrobial properties and application of polysaccharides and their derivatives. Chinese J. Polym. Sci. 2021, 39, 133−146.

Baidu ScholarGoogle Scholar
28 Ibrahim, H. R.; Thomas, U.;Pellegrini, A.

A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action

J. Biol. Chem. 2001 276 43767 43774 10.1074/jbc.M106317200

Ibrahim, H. R.; Thomas, U.;Pellegrini, A. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J. Biol. Chem. 2001, 276, 43767−43774.

Baidu ScholarGoogle Scholar
29 Wang, J.; Chen, X. Y.; Zhao, Y.; Yang, Y.; Wang, W.; Wu, C.; Yang, B.; Zhang, Z.; Zhang, L.; Liu, Y.; Du, X.; Li, W.; Qiu, L.; Jiang, P.; Mou, X. Z.;Li, Y. Q.

pH-Switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds

ACS Nano 2019 13 11686 11697 10.1021/acsnano.9b05608

Wang, J.; Chen, X. Y.; Zhao, Y.; Yang, Y.; Wang, W.; Wu, C.; Yang, B.; Zhang, Z.; Zhang, L.; Liu, Y.; Du, X.; Li, W.; Qiu, L.; Jiang, P.; Mou, X. Z.;Li, Y. Q. pH-Switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 2019, 13, 11686−11697.

Baidu ScholarGoogle Scholar
30 Xiong, M.; Lee, M. W.; Mansbach, R. A.; Song, Z.; Bao, Y.; Peek, R. M.; Yao, C.; Chen, L. F.; Ferguson, A. L.; Wong, G. C. L.; Cheng, J. J.

Helical antimicrobial polypeptides with radial amphiphilicity

Proc. Natl. Acad. Sci. U. S. A. 2015 112 13155 13160 10.1073/pnas.1507893112

Xiong, M.; Lee, M. W.; Mansbach, R. A.; Song, Z.; Bao, Y.; Peek, R. M.; Yao, C.; Chen, L. F.; Ferguson, A. L.; Wong, G. C. L.; Cheng, J. J. Helical antimicrobial polypeptides with radial amphiphilicity. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 13155−13160.

Baidu ScholarGoogle Scholar
31 Liu, Y.; Li, Y.; Shi, L.

Controlled drug delivery systems in eradicating bacterial biofilm-associated infections

J. Control. Release 2021 329 1102 1116 10.1016/j.jconrel.2020.10.038

Liu, Y.; Li, Y.; Shi, L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections. J. Control. Release 2021, 329, 1102−1116.

Baidu ScholarGoogle Scholar
32 Matsumura, Y.; Maeda, H.

A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs

Cancer Res. 1986 46 6387 6392

Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387−6392.

Baidu ScholarGoogle Scholar
33 Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C.

Cancer nanomedicine: progress, challenges and opportunities

Nat. Rev. Cancer 2017 17 20 37 10.1038/nrc.2016.108

Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20−37.

Baidu ScholarGoogle Scholar
34 Gerlowski, L. E.; Jain, R. K.

Microvascular permeability of normal and neoplastic tissues

Microvasc. Res. 1986 31 288 305 10.1016/0026-2862(86)90018-X

Gerlowski, L. E.; Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 1986, 31, 288−305.

Baidu ScholarGoogle Scholar
35 Maeda, H.

The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting

Adv. Enzyme Regul. 2001 41 189 207 10.1016/S0065-2571(00)00013-3

Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001, 41, 189−207.

Baidu ScholarGoogle Scholar
36 Ding, Y.; Xu, Y.; Yang, W.; Niu, P.; Li, X.; Chen, Y.; Li, Z.; Liu, Y.; An, Y.; Liu, Y.; Shen, W.; Shi, L.

Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy

Nano Today 2020 35 100970 10.1016/j.nantod.2020.100970

Ding, Y.; Xu, Y.; Yang, W.; Niu, P.; Li, X.; Chen, Y.; Li, Z.; Liu, Y.; An, Y.; Liu, Y.; Shen, W.; Shi, L. Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy. Nano Today 2020, 35, 100970.

Baidu ScholarGoogle Scholar
37 Liu, Y.; Sun, D.; Fan, Q.; Ma, Q.; Dong, Z.; Tao, W.; Tao, H.; Liu, Z.; Wang, C.

The enhanced permeability and retention effect based nanomedicine at the site of injury

Nano Res. 2020 13 564 569 10.1007/s12274-020-2655-6

Liu, Y.; Sun, D.; Fan, Q.; Ma, Q.; Dong, Z.; Tao, W.; Tao, H.; Liu, Z.; Wang, C. The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Res. 2020, 13, 564−569.

Baidu ScholarGoogle Scholar
38 Maeda, H.

The 35th anniversary of the discovery of EPR effect: a new wave of nanomedicines for tumor-targeted drug delivery-personal remarks and future prospects

J. Pers Med. 2021 11 229 10.3390/jpm11030229

Maeda, H. The 35th anniversary of the discovery of EPR effect: a new wave of nanomedicines for tumor-targeted drug delivery-personal remarks and future prospects. J. Pers Med. 2021, 11, 229.

Baidu ScholarGoogle Scholar
39 Maruo, K.; Akaike, T.; Inada, Y.; Ohkubo, I.; Ono, T.; Maeda, H.

Effect of microbial and mite proteases on low and high molecular weight kininogens. Generation of kinin and inactivation of thiol protease inhibitory activity

J. Biol. Chem. 1993 268 17711 17715 10.1016/S0021-9258(17)46762-7

Maruo, K.; Akaike, T.; Inada, Y.; Ohkubo, I.; Ono, T.; Maeda, H. Effect of microbial and mite proteases on low and high molecular weight kininogens. Generation of kinin and inactivation of thiol protease inhibitory activity. J. Biol. Chem. 1993, 268, 17711−17715.

Baidu ScholarGoogle Scholar
40 Molla, A.; Yamamoto, T.; Akaike, T.; Miyoshi, S.; Maeda, H.

Activation of hageman factor and prekallikrein and generation of kinin by various microbial proteinases

J. Biol. Chem. 1989 264 10589 10594 10.1016/S0021-9258(18)81661-1

Molla, A.; Yamamoto, T.; Akaike, T.; Miyoshi, S.; Maeda, H. Activation of hageman factor and prekallikrein and generation of kinin by various microbial proteinases. J. Biol. Chem. 1989, 264, 10589−10594.

Baidu ScholarGoogle Scholar
41 Kamata, R.; Yamamoto, T.; Matsumoto, K.; Maeda, H.

A serratial protease causes vascular permeability reaction by activation of the Hageman factor-dependent pathway in guinea pigs

Infect. Immun. 1985 48 747 753 10.1128/iai.48.3.747-753.1985

Kamata, R.; Yamamoto, T.; Matsumoto, K.; Maeda, H. A serratial protease causes vascular permeability reaction by activation of the Hageman factor-dependent pathway in guinea pigs. Infect. Immun. 1985, 48, 747−753.

Baidu ScholarGoogle Scholar
42 Matsumoto, K.; Yamamoto, T.; Kamata, R.; Maeda, H.

Pathogenesis of serratial infection: activation of the Hageman factor-prekallikrein cascade by serratial protease

J. Biochem. 1984 96 739 749 10.1093/oxfordjournals.jbchem.a134892

Matsumoto, K.; Yamamoto, T.; Kamata, R.; Maeda, H. Pathogenesis of serratial infection: activation of the Hageman factor-prekallikrein cascade by serratial protease. J. Biochem. 1984, 96, 739−749.

Baidu ScholarGoogle Scholar
43 von Ohle, C.; Gieseke, A.; Nistico, L.; Decker, E. M.; deBeer, D.; Stoodley, P.

Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine

Appl. Environ. Microbiol. 2010 76 2326 2334 10.1128/AEM.02090-09

von Ohle, C.; Gieseke, A.; Nistico, L.; Decker, E. M.; deBeer, D.; Stoodley, P. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl. Environ. Microbiol. 2010, 76, 2326−2334.

Baidu ScholarGoogle Scholar
44 Simmen, H. P.; Battaglia, H.; Giovanoli, P.; Blaser, J.

Analysis of pH, pO2 and pCO2 in drainage fluid allows for rapid detection of infectious complications during the follow-up period after abdominal surgery

Infection 1994 22 386 389 10.1007/BF01715494

Simmen, H. P.; Battaglia, H.; Giovanoli, P.; Blaser, J. Analysis of pH, pO2 and pCO2 in drainage fluid allows for rapid detection of infectious complications during the follow-up period after abdominal surgery. Infection 1994, 22, 386−389.

Baidu ScholarGoogle Scholar
45 Su, L.; Li, Y.; Liu, Y.; Ma, R.; Liu, Y.; Huang, F.; An, Y.; Ren, Y.; van der Mei, H. C.; Busscher, H. J.; Shi, L.

Antifungal-inbuilt metal-organic-frameworks eradicate Candida albicans biofilms

Adv. Funct. Mater. 2020 30 2000537 10.1002/adfm.202000537

Su, L.; Li, Y.; Liu, Y.; Ma, R.; Liu, Y.; Huang, F.; An, Y.; Ren, Y.; van der Mei, H. C.; Busscher, H. J.; Shi, L. Antifungal-inbuilt metal-organic-frameworks eradicate Candida albicans biofilms. Adv. Funct. Mater. 2020, 30, 2000537.

Baidu ScholarGoogle Scholar
46 Simmen, H. P.; Blaser, J.

Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery

Am. J. Surg. 1993 166 24 27 10.1016/S0002-9610(05)80576-8

Simmen, H. P.; Blaser, J. Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am. J. Surg. 1993, 166, 24−27.

Baidu ScholarGoogle Scholar
47 Su, L.; Li, Y.; Liu, Y.; An, Y.; Shi, L.

Recent advances and future prospects on adaptive biomaterials for antimicrobial applications

Macromol. Biosci. 2019 19 1900289 10.1002/mabi.201900289

Su, L.; Li, Y.; Liu, Y.; An, Y.; Shi, L. Recent advances and future prospects on adaptive biomaterials for antimicrobial applications. Macromol. Biosci. 2019, 19, 1900289.

Baidu ScholarGoogle Scholar
48 Stewart, P. S.; Franklin, M. J.

Physiological heterogeneity in biofilms

Nat. Rev. Microbiol. 2008 6 199 210 10.1038/nrmicro1838

Stewart, P. S.; Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6, 199−210.

Baidu ScholarGoogle Scholar
49 Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S.

Biofilms: an emergent form of bacterial life

Nat. Rev. Microbiol. 2016 14 563 575 10.1038/nrmicro.2016.94

Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563−575.

Baidu ScholarGoogle Scholar
50 Thambi, T.; Park, J. H.; Lee, D. S.

Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives

Chem. Commun. 2016 52 8492 8500 10.1039/C6CC02972H

Thambi, T.; Park, J. H.; Lee, D. S. Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives. Chem. Commun. 2016, 52, 8492−8500.

Baidu ScholarGoogle Scholar
51 Kumari, R.; Sunil, D.; Ningthoujam, R. S.

Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: an up-to-date review

J. Control. Release 2020 319 135 156 10.1016/j.jconrel.2019.12.041

Kumari, R.; Sunil, D.; Ningthoujam, R. S. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: an up-to-date review. J. Control. Release 2020, 319, 135−156.

Baidu ScholarGoogle Scholar
52 Hu, D.; Zou, L.; Yu, W.; Jia, F.; Han, H.; Yao, K.; Jin, Q.; Ji, J.

Relief of biofilm hypoxia using an oxygen nanocarrier: a new paradigm for enhanced antibiotic therapy

Adv. Sci. 2020 7 2000398 10.1002/advs.202000398

Hu, D.; Zou, L.; Yu, W.; Jia, F.; Han, H.; Yao, K.; Jin, Q.; Ji, J. Relief of biofilm hypoxia using an oxygen nanocarrier: a new paradigm for enhanced antibiotic therapy. Adv. Sci. 2020, 7, 2000398.

Baidu ScholarGoogle Scholar
53 Devnarain, N.; Osman, N.; Fasiku, V. O.; Makhathini, S.; Salih, M.; Ibrahim, U. H.; Govender, T.

Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades

WIREs-Nanomed. Nanobiotechnol. 2021 13 e1664 10.1002/wnan.1664

Devnarain, N.; Osman, N.; Fasiku, V. O.; Makhathini, S.; Salih, M.; Ibrahim, U. H.; Govender, T. Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades. WIREs-Nanomed. Nanobiotechnol. 2021, 13, e1664.

Baidu ScholarGoogle Scholar
54 Legigan, T.; Clarhaut, J.; Tranoy-Opalinski, I.; Monvoisin, A.; Renoux, B.; Thomas, M.; Le Pape, A.; Lerondel, S.; Papot, S.

The first generation of β-galactosidase-responsive prodrugs designed for the selective treatment of solid tumors in prodrug monotherapy

Angew. Chem. Int. Ed. 2012 51 11606 11610 10.1002/anie.201204935

Legigan, T.; Clarhaut, J.; Tranoy-Opalinski, I.; Monvoisin, A.; Renoux, B.; Thomas, M.; Le Pape, A.; Lerondel, S.; Papot, S. The first generation of β-galactosidase-responsive prodrugs designed for the selective treatment of solid tumors in prodrug monotherapy. Angew. Chem. Int. Ed. 2012, 51, 11606−11610.

Baidu ScholarGoogle Scholar
55 DeVinney, R.; Steele-Mortimer, O.; Finlay, B. B.

Phosphatases and kinases delivered to the host cell by bacterial pathogens

Trends Microbiol. 2000 8 29 33 10.1016/S0966-842X(99)01657-1

DeVinney, R.; Steele-Mortimer, O.; Finlay, B. B. Phosphatases and kinases delivered to the host cell by bacterial pathogens. Trends Microbiol. 2000, 8, 29−33.

Baidu ScholarGoogle Scholar
56 Xu, S.; Wang, Q.; Zhang, Q.; Zhang, L.; Zuo, L.; Jiang, J. D.; Hu, H. Y.

Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe

Chem. Commun. 2017 53 11177 11180 10.1039/C7CC07050K

Xu, S.; Wang, Q.; Zhang, Q.; Zhang, L.; Zuo, L.; Jiang, J. D.; Hu, H. Y. Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe. Chem. Commun. 2017, 53, 11177−11180.

Baidu ScholarGoogle Scholar
57 Kumar Shukla, S.; Rao, T. S.

Dispersal of bap-mediated Staphylococcus aureus biofilm by proteinase K

J. Antibiotics 2013 66 55 60 10.1038/ja.2012.98

Kumar Shukla, S.; Rao, T. S. Dispersal of bap-mediated Staphylococcus aureus biofilm by proteinase K. J. Antibiotics 2013, 66, 55−60.

Baidu ScholarGoogle Scholar
58 Gupta, R.; Gupta, N.; Rathi, P.

Bacterial lipases: an overview of production, purification and biochemical properties

Appl. Microbiol. Biotechnol. 2004 64 763 781 10.1007/s00253-004-1568-8

Gupta, R.; Gupta, N.; Rathi, P. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 2004, 64, 763−781.

Baidu ScholarGoogle Scholar
59 Songer, J. G.

Bacterial phospholipases and their role in virulence

Trends Microbiol. 1997 5 156 161 10.1016/S0966-842X(97)01005-6

Songer, J. G. Bacterial phospholipases and their role in virulence. Trends Microbiol. 1997, 5, 156−161.

Baidu ScholarGoogle Scholar
60 Gill, D. M.

Bacterial toxins: a table of lethal amounts

Microbiol. Rev. 1982 46 86 94 10.1128/mr.46.1.86-94.1982

Gill, D. M. Bacterial toxins: a table of lethal amounts. Microbiol. Rev. 1982, 46, 86−94.

Baidu ScholarGoogle Scholar
61 Middlebrook, J. L.; Dorland, R. B.

Bacterial toxins: cellular mechanisms of action

Microbiol. Rev. 1984 48 199 221 10.1128/mr.48.3.199-221.1984

Middlebrook, J. L.; Dorland, R. B. Bacterial toxins: cellular mechanisms of action. Microbiol. Rev. 1984, 48, 199−221.

Baidu ScholarGoogle Scholar
62 Li, Y.; Liu, G.; Wang, X.; Hu, J.; Liu, S.

Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents

Angew. Chem. In. Ed. 2016 55 1760 1764 10.1002/anie.201509401

Li, Y.; Liu, G.; Wang, X.; Hu, J.; Liu, S. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents. Angew. Chem. In. Ed. 2016, 55, 1760−1764.

Baidu ScholarGoogle Scholar
63 Pulendran, B.; Kumar, P.; Cutler, C. W.; Mohamadzadeh, M.; Van Dyke, T.; Banchereau, J.

Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo

J. Immunol. 2001 167 5067 5076 10.4049/jimmunol.167.9.5067

Pulendran, B.; Kumar, P.; Cutler, C. W.; Mohamadzadeh, M.; Van Dyke, T.; Banchereau, J. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J. Immunol. 2001, 167, 5067−5076.

Baidu ScholarGoogle Scholar
64 Murphy, M. P.; Holmgren, A.; Larsson, N. G.; Halliwell, B.; Chang, C. J.; Kalyanaraman, B.; Rhee, S. G.; Thornalley, P. J.; Partridge, L.; Gems, D.; Nystrom, T.; Belousov, V.; Schumacker, P. T.; Winterbourn, C. C.

Unraveling the biological roles of reactive oxygen species

Cell Metab. 2011 13 361 366 10.1016/j.cmet.2011.03.010

Murphy, M. P.; Holmgren, A.; Larsson, N. G.; Halliwell, B.; Chang, C. J.; Kalyanaraman, B.; Rhee, S. G.; Thornalley, P. J.; Partridge, L.; Gems, D.; Nystrom, T.; Belousov, V.; Schumacker, P. T.; Winterbourn, C. C. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011, 13, 361−366.

Baidu ScholarGoogle Scholar
65 Ye, H.; Zhou, Y.; Liu, X.; Chen, Y.; Duan, S.; Zhu, R.; Liu, Y.; Yin, L.

Recent advances on reactive oxygen species-responsive delivery and diagnosis system

Biomacromolecules. 2019 20 2441 2463 10.1021/acs.biomac.9b00628

Ye, H.; Zhou, Y.; Liu, X.; Chen, Y.; Duan, S.; Zhu, R.; Liu, Y.; Yin, L. Recent advances on reactive oxygen species-responsive delivery and diagnosis system. Biomacromolecules. 2019, 20, 2441−2463.

Baidu ScholarGoogle Scholar
66 Li, C.; Liu, X.; Liu, Y.; Huang, F.; Wu, G.; Liu, Y.; Zhang, Z.; Ding, Y.; Lv, J.; Ma, R.; An, Y.; Shi, L.

Glucose and H2O2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery

Nanoscale 2019 11 9163 9175 10.1039/C9NR01554J

Li, C.; Liu, X.; Liu, Y.; Huang, F.; Wu, G.; Liu, Y.; Zhang, Z.; Ding, Y.; Lv, J.; Ma, R.; An, Y.; Shi, L. Glucose and H2O2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery. Nanoscale 2019, 11, 9163−9175.

Baidu ScholarGoogle Scholar
67 Li, Y.; Hu, J.; Liu, X.; Liu, Y.; Lv, S.; Dang, J.; Ji, Y.; He, J.; Yin, L.

Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment

Nano Res. 2019 12 999 1008 10.1007/s12274-019-2330-y

Li, Y.; Hu, J.; Liu, X.; Liu, Y.; Lv, S.; Dang, J.; Ji, Y.; He, J.; Yin, L. Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment. Nano Res. 2019, 12, 999−1008.

Baidu ScholarGoogle Scholar
68 Dalsin, J. L.; Messersmith, P. B.

Bioinspired antifouling polymers

Mater. Today 2005 8 38 46 10.1016/S1369-7021(05)71079-8

Dalsin, J. L.; Messersmith, P. B. Bioinspired antifouling polymers. Mater. Today 2005, 8, 38−46.

Baidu ScholarGoogle Scholar
69 Gong, Y. K.; Liu, L. P.; Messersmith, P. B.

Doubly biomimetic catecholic phosphorylcholine copolymer: a platform strategy for fabricating antifouling surfaces

Macromol. Biosci. 2012 12 979 985 10.1002/mabi.201200074

Gong, Y. K.; Liu, L. P.; Messersmith, P. B. Doubly biomimetic catecholic phosphorylcholine copolymer: a platform strategy for fabricating antifouling surfaces. Macromol. Biosci. 2012, 12, 979−985.

Baidu ScholarGoogle Scholar
70 Cao, Z.; Mi, L.; Mendiola, J.; Ella-Menye, J. R.; Zhang, L.; Xue, H.; Jiang, S.

Reversibly switching the function of a surface between attacking and defending against bacteria

Angew. Chem. Int. Ed. 2012 51 2602 2605 10.1002/anie.201106466

Cao, Z.; Mi, L.; Mendiola, J.; Ella-Menye, J. R.; Zhang, L.; Xue, H.; Jiang, S. Reversibly switching the function of a surface between attacking and defending against bacteria. Angew. Chem. Int. Ed. 2012, 51, 2602−2605.

Baidu ScholarGoogle Scholar
71 Khoo, X.; Grinstaff, M. W.

Novel infection-resistant surface coatings: a bioengineering approach

MRS Bull. 2011 36 357 366 10.1557/mrs.2011.66

Khoo, X.; Grinstaff, M. W. Novel infection-resistant surface coatings: a bioengineering approach. MRS Bull. 2011, 36, 357−366.

Baidu ScholarGoogle Scholar
72 Ramstedt, M.; Ekstrand-Hammarstrom, B.; Shchukarev, A. V.; Bucht, A.; Osterlund, L.; Welch, M.; Huck, W. T. S

Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts

Biomaterials 2009 30 1524 1531 10.1016/j.biomaterials.2008.12.008

Ramstedt, M.; Ekstrand-Hammarstrom, B.; Shchukarev, A. V.; Bucht, A.; Osterlund, L.; Welch, M.; Huck, W. T. S. Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts. Biomaterials 2009, 30, 1524−1531.

Baidu ScholarGoogle Scholar
73 Zhang, L.; Pornpattananangkul, D.; Hu, C. M. J.; Huang, C. M.

Development of nanoparticles for antimicrobial drug delivery

Curr. Med. Chem. 2010 17 585 594 10.2174/092986710790416290

Zhang, L.; Pornpattananangkul, D.; Hu, C. M. J.; Huang, C. M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 2010, 17, 585−594.

Baidu ScholarGoogle Scholar
74 Epand, R. F.; Savage, P. B.; Epand, R. M.

Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins)

Biochim. Biophys. Acta-Biomembr. 2007 1768 2500 2509 10.1016/j.bbamem.2007.05.023

Epand, R. F.; Savage, P. B.; Epand, R. M. Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim. Biophys. Acta-Biomembr. 2007, 1768, 2500−2509.

Baidu ScholarGoogle Scholar
75 Nagasaki, Y.

Construction of a densely poly(ethylene glycol)-chain-tethered surface and its performance

Polym. J. 2011 43 949 958 10.1038/pj.2011.93

Nagasaki, Y. Construction of a densely poly(ethylene glycol)-chain-tethered surface and its performance. Polym. J. 2011, 43, 949−958.

Baidu ScholarGoogle Scholar
76 Jiang, S.; Cao, Z.

Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications

Adv. Mater. 2010 22 920 932 10.1002/adma.200901407

Jiang, S.; Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010, 22, 920−932.

Baidu ScholarGoogle Scholar
77 Mi, L.; Bernards, M. T.; Cheng, G.; Yu, Q.; Jiang, S.

pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers

Biomaterials 2010 31 2919 2925 10.1016/j.biomaterials.2009.12.038

Mi, L.; Bernards, M. T.; Cheng, G.; Yu, Q.; Jiang, S. pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers. Biomaterials 2010, 31, 2919−2925.

Baidu ScholarGoogle Scholar
78 Cao, Z.; Brault, N.; Xue, H.; Keefe, A.; Jiang, S.

Manipulating sticky and non-sticky properties in a single material

Angew. Chem. Int. Ed. 2011 50 6102 6104 10.1002/anie.201100004

Cao, Z.; Brault, N.; Xue, H.; Keefe, A.; Jiang, S. Manipulating sticky and non-sticky properties in a single material. Angew. Chem. Int. Ed. 2011, 50, 6102−6104.

Baidu ScholarGoogle Scholar
79 Cheng, Y.; Feng, G.; Moraru, C. I.

Micro- and nanotopography sensitive bacterial attachment mechanisms: a review

Front. Microbiol. 2019 10 191 10.3389/fmicb.2019.00191

Cheng, Y.; Feng, G.; Moraru, C. I. Micro- and nanotopography sensitive bacterial attachment mechanisms: a review. Front. Microbiol. 2019, 10, 191.

Baidu ScholarGoogle Scholar
80 Lee, S. W.; Phillips, K. S.; Gu, H.; Kazemzadeh-Narbat, M.; Ren, D.

How microbes read the map: effects of implant topography on bacterial adhesion and biofilm formation

Biomaterials 2021 268 120595 10.1016/j.biomaterials.2020.120595

Lee, S. W.; Phillips, K. S.; Gu, H.; Kazemzadeh-Narbat, M.; Ren, D. How microbes read the map: effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 2021, 268, 120595.

Baidu ScholarGoogle Scholar
81 Keskin, D.; Zu, G.; Forson, A. M.; Tromp, L.; Sjollema, J.; van Rijn, P.

Nanogels: a novel approach in antimicrobial delivery systems and antimicrobial coatings

Bioactive Mater. 2021 6 3634 3657 10.1016/j.bioactmat.2021.03.004

Keskin, D.; Zu, G.; Forson, A. M.; Tromp, L.; Sjollema, J.; van Rijn, P. Nanogels: a novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioactive Mater. 2021, 6, 3634−3657.

Baidu ScholarGoogle Scholar
82 Keskin, D.; Mergel, O.; van der Mei, H. C.; Busscher, H. J.; van Rijn, P.

Inhibiting bacterial adhesion by mechanically modulated microgel coatings

Biomacromolecules 2019 20 243 253 10.1021/acs.biomac.8b01378

Keskin, D.; Mergel, O.; van der Mei, H. C.; Busscher, H. J.; van Rijn, P. Inhibiting bacterial adhesion by mechanically modulated microgel coatings. Biomacromolecules 2019, 20, 243−253.

Baidu ScholarGoogle Scholar
83 Jiang, R. J.; Yan, S. J.; Tian, L. M.; Xu, S. A.; Xin, Z. R.; Luan, S. F.; Yin, J. H.; Ren, L. Q.; Zhao, J.

A biomimetic surface for infection-resistance through assembly of metal-phenolic networks

Chinese J. Polym. Sci. 2018 36 576 583 10.1007/s10118-018-2032-z

Jiang, R. J.; Yan, S. J.; Tian, L. M.; Xu, S. A.; Xin, Z. R.; Luan, S. F.; Yin, J. H.; Ren, L. Q.; Zhao, J. A biomimetic surface for infection-resistance through assembly of metal-phenolic networks. Chinese J. Polym. Sci. 2018, 36, 576−583.

Baidu ScholarGoogle Scholar
84 Jin, X.; Xiong, Y. H.; Zhang, X. Y.; Wang, R.; Xing, Y.; Duan, S.; Chen, D.; Tian, W.; Xu, F. J.

Self-adaptive antibacterial porous implants with sustainable responses for infected bone defect therapy

Adv. Funct. Mater. 2019 29 1807915 10.1002/adfm.201807915

Jin, X.; Xiong, Y. H.; Zhang, X. Y.; Wang, R.; Xing, Y.; Duan, S.; Chen, D.; Tian, W.; Xu, F. J. Self-adaptive antibacterial porous implants with sustainable responses for infected bone defect therapy. Adv. Funct. Mater. 2019, 29, 1807915.

Baidu ScholarGoogle Scholar
85 Zhao, C. J.; An, Y. L.; Yin, F. F.; Zhang, W. Q.; Shi, L. Q.

The self-assembly of polystyrene-b-poly(acrylic acid)/polystyrene in water

Acta Polymerica Sinica (in Chinese) 2005 379 383

Zhao, C. J.; An, Y. L.; Yin, F. F.; Zhang, W. Q.; Shi, L. Q. The self-assembly of polystyrene-b-poly(acrylic acid)/polystyrene in water. Acta Polymerica Sinica (in Chinese) 2005, 379−383.

Baidu ScholarGoogle Scholar
86 He, Z.; Sun, P.; Xiong, D. A.; Ma, R.; Lin, H.; Shi, L

Investigation of the micellization process of diblock copolymers containing pH sensitive poly(4-vinylpyridine) by NMR

Acta Polymerica Sinica (in Chinese) 2008 691 696 10.3724/SP.J.1105.2008.00691

He, Z.; Sun, P.; Xiong, D. A.; Ma, R.; Lin, H.; Shi, L. Investigation of the micellization process of diblock copolymers containing pH sensitive poly(4-vinylpyridine) by NMR. Acta Polymerica Sinica (in Chinese) 2008, 691−696.

Baidu ScholarGoogle Scholar
87 Chai, Z. H.; Ma, R. J.; Zhang, Z. K.; Shi, L. Q.

Recent progress in biomimetic light-harvesting materials

Acta Polymerica Sinica (in Chinese) 2012 1108 1117 10.3724/SP.J.1105.2012.12128

Chai, Z. H.; Ma, R. J.; Zhang, Z. K.; Shi, L. Q. Recent progress in biomimetic light-harvesting materials. Acta Polymerica Sinica (in Chinese) 2012, 1108−1117.

Baidu ScholarGoogle Scholar
88 Xiong, J.; Wang, J. Z.; Ran, Q. P.; An, Y. L.; Zhang, Z. K.; Shi, L. Q.

Solution behavior of comb-like copolymer dispersants probed by laser light scattering

Acta Polymerica Sinica (in Chinese) 2013 750 754 10.3724/SP.J.1105.2013.12435

Xiong, J.; Wang, J. Z.; Ran, Q. P.; An, Y. L.; Zhang, Z. K.; Shi, L. Q. Solution behavior of comb-like copolymer dispersants probed by laser light scattering. Acta Polymerica Sinica (in Chinese) 2013, 750−754.

Baidu ScholarGoogle Scholar
89 Hao, J.; Li, A.; Liu, Y.; Ma, R. J.; Shi, L. Q.; An, Y. L.

Tpps aggregates with chirality induced by hydrogen bonds from polycationic glycoconjugate

Acta Polymerica Sinica (in Chinese) 2014 1378 1385 10.11777/j.issn1000-3304.2014.14029

Hao, J.; Li, A.; Liu, Y.; Ma, R. J.; Shi, L. Q.; An, Y. L. Tpps aggregates with chirality induced by hydrogen bonds from polycationic glycoconjugate. Acta Polymerica Sinica (in Chinese) 2014, 1378−1385.

Baidu ScholarGoogle Scholar
90 Liu, G.; Yang, H.; Ma, R. J.; Shi, L. Q.

Phenylboronic acid based glucose-responsive polymeric materials for insulin delivery and glucose monitoring

Acta Polymerica Sinica (in Chinese) 2014 1161 1173 10.11777/j.issn1000-3304.2014.14079

Liu, G.; Yang, H.; Ma, R. J.; Shi, L. Q. Phenylboronic acid based glucose-responsive polymeric materials for insulin delivery and glucose monitoring. Acta Polymerica Sinica (in Chinese) 2014, 1161−1173.

Baidu ScholarGoogle Scholar
91 Zhang, H. X.; Song, Y. Q.; An, Y. L.; Wang, Y.; Shi, L. Q.

Protein refolding assisted by thermosensitive complex micelles

Acta Polymerica Sinica (in Chinese) 2014 1561 1567 10.11777/j.issn1000-3304.2014.14096

Zhang, H. X.; Song, Y. Q.; An, Y. L.; Wang, Y.; Shi, L. Q. Protein refolding assisted by thermosensitive complex micelles. Acta Polymerica Sinica (in Chinese) 2014, 1561−1567.

Baidu ScholarGoogle Scholar
92 Liu, Y.; Busscher, H. J.; Zhao, B.; Li, Y.; Zhang, Z.; van der Mei, H. C.; Ren, Y.; Shi, L.

, Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms

ACS Nano 2016 10 4779 4789 10.1021/acsnano.6b01370

Liu, Y.; Busscher, H. J.; Zhao, B.; Li, Y.; Zhang, Z.; van der Mei, H. C.; Ren, Y.; Shi, L. , Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano 2016, 10, 4779−4789.

Baidu ScholarGoogle Scholar
93 Huang, F.; Gao, Y.; Zhang, Y.; Cheng, T.; Ou, H.; Yang, L.; Liu, J.; Shi, L.; Liu, J.

Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity

ACS Appl. Mater. Interfaces 2017 9 16880 16889 10.1021/acsami.7b03347

Huang, F.; Gao, Y.; Zhang, Y.; Cheng, T.; Ou, H.; Yang, L.; Liu, J.; Shi, L.; Liu, J. Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl. Mater. Interfaces 2017, 9, 16880−16889.

Baidu ScholarGoogle Scholar
94 Praphakar, R. A.; Ebenezer, R. S.; Vignesh, S.; Shakila, H.; Rajan, M.

Versatile pH-responsive chitosan-g-polycaprolactone/maleic anhydride-isoniazid polymeric micelle to improve the bioavailability of tuberculosis multidrugs

ACS Appl. Bio Mater. 2019 2 1931 1943 10.1021/acsabm.9b00003

Praphakar, R. A.; Ebenezer, R. S.; Vignesh, S.; Shakila, H.; Rajan, M. Versatile pH-responsive chitosan-g-polycaprolactone/maleic anhydride-isoniazid polymeric micelle to improve the bioavailability of tuberculosis multidrugs. ACS Appl. Bio Mater. 2019, 2, 1931−1943.

Baidu ScholarGoogle Scholar
95 Soria-Carrera, H.; Lucia, A.; De Matteis, L.; Ainsa, J. A.; de la Fuente, J. M.; Martin-Rapun, R.

Polypeptidic micelles stabilized with sodium alginate enhance the activity of encapsulated bedaquiline

Macromol. Biosci. 2019 19 1800397 10.1002/mabi.201800397

Soria-Carrera, H.; Lucia, A.; De Matteis, L.; Ainsa, J. A.; de la Fuente, J. M.; Martin-Rapun, R. Polypeptidic micelles stabilized with sodium alginate enhance the activity of encapsulated bedaquiline. Macromol. Biosci. 2019, 19, 1800397.

Baidu ScholarGoogle Scholar
96 Liu, Y.; Li, Y.; Keskin, D.; Shi, L.

Poly(β-amino esters): synthesis, formulations, and their biomedical applications

Adv. Healthc. Mater. 2019 8 1801359 10.1002/adhm.201801359

Liu, Y.; Li, Y.; Keskin, D.; Shi, L. Poly(β-amino esters): synthesis, formulations, and their biomedical applications. Adv. Healthc. Mater. 2019, 8, 1801359.

Baidu ScholarGoogle Scholar
97 Liu, Y.; van der Mei, H. C.; Zhao, B.; Zhai, Y.; Cheng, T.; Li, Y.; Zhang, Z.; Busscher, H. J.; Ren, Y.; Shi, L.

Eradication of multidrug-resistant staphylococcal infections by light-activatable micellar nanocarriers in a murine model

Adv. Funct. Mater. 2017 27 1701974 10.1002/adfm.201701974

Liu, Y.; van der Mei, H. C.; Zhao, B.; Zhai, Y.; Cheng, T.; Li, Y.; Zhang, Z.; Busscher, H. J.; Ren, Y.; Shi, L. Eradication of multidrug-resistant staphylococcal infections by light-activatable micellar nanocarriers in a murine model. Adv. Funct. Mater. 2017, 27, 1701974.

Baidu ScholarGoogle Scholar
98 Elsabahy, M.; Wooley, K. L.

Design of polymeric nanoparticles for biomedical delivery applications

Chem. Soc. Rev. 2012 41 2545 2561 10.1039/c2cs15327k

Elsabahy, M.; Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545−2561.

Baidu ScholarGoogle Scholar
99 Pelgrift, R. Y.; Friedman, A. J.

Nanotechnology as a therapeutic tool to combat microbial resistance

Adv. Drug Del. Rev. 2013 65 1803 1815 10.1016/j.addr.2013.07.011

Pelgrift, R. Y.; Friedman, A. J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Del. Rev. 2013, 65, 1803−1815.

Baidu ScholarGoogle Scholar
100 Liu, Y.; Ren, Y.; Li, Y.; Su, L.; Zhang, Y.; Huang, F.; Liu, J.; Liu, J.; van Kooten, T. G.; An, Y.; Shi, L.; van der Mei, H. C.; Busscher, H. J.

Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models

Acta Biomater. 2018 79 331 343 10.1016/j.actbio.2018.08.038

Liu, Y.; Ren, Y.; Li, Y.; Su, L.; Zhang, Y.; Huang, F.; Liu, J.; Liu, J.; van Kooten, T. G.; An, Y.; Shi, L.; van der Mei, H. C.; Busscher, H. J. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomater. 2018, 79, 331−343.

Baidu ScholarGoogle Scholar
101 Ferrer, M. C. C.; Dastghey, S.; Hickok, N. J.; Eckrnann, D. M.; Composto, R. J.

Designing nanogel carriers for antibacterial applications

Acta Biomater. 2014 10 2105 2111 10.1016/j.actbio.2014.01.009

Ferrer, M. C. C.; Dastghey, S.; Hickok, N. J.; Eckrnann, D. M.; Composto, R. J. Designing nanogel carriers for antibacterial applications. Acta Biomater. 2014, 10, 2105−2111.

Baidu ScholarGoogle Scholar
102 Liu, T.; Liu, H. X.; Wu, Z. M.; Chen, T.; Zhou, L.; Liang, Y. Y.; Me, B.; Huang, H. X.; Jiang, Z. Y.; Xie, M. Q.; Wu, T.

The use of poly(methacrylic acid) nanogel to control the release of amoxycillin with lower cytotoxicity

Mater. Sci. Eng. C-Mater. Biol. Appl. 2014 43 622 629 10.1016/j.msec.2014.07.067

Liu, T.; Liu, H. X.; Wu, Z. M.; Chen, T.; Zhou, L.; Liang, Y. Y.; Me, B.; Huang, H. X.; Jiang, Z. Y.; Xie, M. Q.; Wu, T. The use of poly(methacrylic acid) nanogel to control the release of amoxycillin with lower cytotoxicity. Mater. Sci. Eng. C-Mater. Biol. Appl. 2014, 43, 622−629.

Baidu ScholarGoogle Scholar
103 Chen, T.; Chen, L.; Li, H. C.; Chen, Y. H.; Guo, H. X.; Shu, Y.; Chen, Z. Y.; Cai, C. H.; Guo, L. N.; Zhang, X. N.; Zhou, L.; Zhong, Q.

Design and in vitro evaluation of a novel poly(methacrylic acid)/metronidazole antibacterial nanogel as an oral dosage form

Colloid. Surf. B 2014 118 65 71 10.1016/j.colsurfb.2014.02.011

Chen, T.; Chen, L.; Li, H. C.; Chen, Y. H.; Guo, H. X.; Shu, Y.; Chen, Z. Y.; Cai, C. H.; Guo, L. N.; Zhang, X. N.; Zhou, L.; Zhong, Q. Design and in vitro evaluation of a novel poly(methacrylic acid)/metronidazole antibacterial nanogel as an oral dosage form. Colloid. Surf. B 2014, 118, 65−71.

Baidu ScholarGoogle Scholar
104 Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R.

Hydrogels in biology and medicine: from molecular principles to bionanotechnology

Adv. Mater. 2006 18 1345 1360 10.1002/adma.200501612

Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345−1360.

Baidu ScholarGoogle Scholar
105 Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K.

The development of microgels/nanogels for drug delivery applications

Prog. Polym. Sci. 2008 33 448 477 10.1016/j.progpolymsci.2008.01.002

Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2008, 33, 448−477.

Baidu ScholarGoogle Scholar
106 Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderon, M.

Stimuli-responsive nanogel composites and their application in nanomedicine

Chem. Soc. Rev. 2015 44 6161 6186 10.1039/C5CS00199D

Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderon, M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem. Soc. Rev. 2015, 44, 6161−6186.

Baidu ScholarGoogle Scholar
107 Hu, Y.; Zhang, Z. Y.; Li, Y.; Ding, X. K.; Li, D. W.; Shen, C. N.; Xu, F. J.

Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications

Macromol. Rapid Commun. 2018 39 1800069 10.1002/marc.201800069

Hu, Y.; Zhang, Z. Y.; Li, Y.; Ding, X. K.; Li, D. W.; Shen, C. N.; Xu, F. J. Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol. Rapid Commun. 2018, 39, 1800069.

Baidu ScholarGoogle Scholar
108 Liu, J. Y.; Li, Y.; Hu, Y.; Cheng, G.; Ye, E. Y.; Shen, C. A.; Xu, F. J.

Hemostatic porous sponges of cross-linked hyaluronic acid/cationized dextran by one self-foaming process

Mater. Sci. Eng. C-Mater. Biol. Appl. 2018 83 160 168 10.1016/j.msec.2017.10.007

Liu, J. Y.; Li, Y.; Hu, Y.; Cheng, G.; Ye, E. Y.; Shen, C. A.; Xu, F. J. Hemostatic porous sponges of cross-linked hyaluronic acid/cationized dextran by one self-foaming process. Mater. Sci. Eng. C-Mater. Biol. Appl. 2018, 83, 160−168.

Baidu ScholarGoogle Scholar
109 Li, L. L.; Xu, J. H.; Qi, G. B.; Zhao, X. Z.; Yu, F. Q.; Wang, H.

Core-shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery

ACS Nano 2014 8 4975 4983 10.1021/nn501040h

Li, L. L.; Xu, J. H.; Qi, G. B.; Zhao, X. Z.; Yu, F. Q.; Wang, H. Core-shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery. ACS Nano 2014, 8, 4975−4983.

Baidu ScholarGoogle Scholar
110 Wang, D. Y.; van der Mei, H. C.; Ren, Y.; Busscher, H. J.; Shi, L.

Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections

Front. Chem. 2020 7 872 10.3389/fchem.2019.00872

Wang, D. Y.; van der Mei, H. C.; Ren, Y.; Busscher, H. J.; Shi, L. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front. Chem. 2020, 7, 872.

Baidu ScholarGoogle Scholar
111 Mugabe, C.; Halwani, M.; Azghani, A. O.; Lafrenie, R. M.; Omri, A.

Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa

Antimicrob. Agents Chemother. 2006 50 2016 2022 10.1128/AAC.01547-05

Mugabe, C.; Halwani, M.; Azghani, A. O.; Lafrenie, R. M.; Omri, A. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006, 50, 2016−2022.

Baidu ScholarGoogle Scholar
112 Mugabe, C.; Azghani, A. O.; Omri, A.

Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients

J. Antimicrob. Chemother. 2005 55 269 271 10.1093/jac/dkh518

Mugabe, C.; Azghani, A. O.; Omri, A. Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J. Antimicrob. Chemother. 2005, 55, 269−271.

Baidu ScholarGoogle Scholar
113 Sachetelli, S.; Khalil, H.; Chen, T.; Beaulac, C.; Senechal, S.; Lagace, J.

Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells

Biochim. Biophys. Acta-Biomembr. 2000 1463 254 266 10.1016/S0005-2736(99)00217-5

Sachetelli, S.; Khalil, H.; Chen, T.; Beaulac, C.; Senechal, S.; Lagace, J. Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells. Biochim. Biophys. Acta-Biomembr. 2000, 1463, 254−266.

Baidu ScholarGoogle Scholar
114 Marier, J. F.; Lavigne, J.; Ducharme, M. P.

Pharmacokinetics and efficacies of liposomal and conventional formulations of tobramycin after intratracheal administration in rats with pulmonary Burkholdefia cepacia infection

Antimicrob. Agents Chemother. 2002 46 3776 3781 10.1128/AAC.46.12.3776-3781.2002

Marier, J. F.; Lavigne, J.; Ducharme, M. P. Pharmacokinetics and efficacies of liposomal and conventional formulations of tobramycin after intratracheal administration in rats with pulmonary Burkholdefia cepacia infection. Antimicrob. Agents Chemother. 2002, 46, 3776−3781.

Baidu ScholarGoogle Scholar
115 Messiaen, A. S.; Forier, K.; Nelis, H.; Braeckmans, K.; Coenye, T.

Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms

PLoS One 2013 8 e79220 10.1371/journal.pone.0079220

Messiaen, A. S.; Forier, K.; Nelis, H.; Braeckmans, K.; Coenye, T. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms. PLoS One 2013, 8, e79220.

Baidu ScholarGoogle Scholar
116 Nicolosi, D.; Scalia, M.; Nicolosi, V. M.; Pignatello, R.

Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria

Int. J. Antimicrob. Agents 2010 35 553 558 10.1016/j.ijantimicag.2010.01.015

Nicolosi, D.; Scalia, M.; Nicolosi, V. M.; Pignatello, R. Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria. Int. J. Antimicrob. Agents 2010, 35, 553−558.

Baidu ScholarGoogle Scholar
117 Chakraborty, S. P.; Sahu, S. K.; Pramanik, P.; Roy, S.

In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus

Int. J. Pharm. 2012 436 659 676 10.1016/j.ijpharm.2012.07.033

Chakraborty, S. P.; Sahu, S. K.; Pramanik, P.; Roy, S. In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus. Int. J. Pharm. 2012, 436, 659−676.

Baidu ScholarGoogle Scholar
118 Solleti, V. S.; Alhariri, M.; Halwani, M.; Omri, A.

Antimicrobial properties of liposomal azithromycin for Pseudomonas infections in cystic fibrosis patients

J. Antimicrob. Chemother. 2015 70 784 796 10.1093/jac/dku452

Solleti, V. S.; Alhariri, M.; Halwani, M.; Omri, A. Antimicrobial properties of liposomal azithromycin for Pseudomonas infections in cystic fibrosis patients. J. Antimicrob. Chemother. 2015, 70, 784−796.

Baidu ScholarGoogle Scholar
119 Vyas, S. P.; Sihorkar, V.; Dubey, P. K.

Preparation, characterization and in vitro antimicrobial activity of metronidazole bearing lectinized liposomes for intra-periodontal pocket delivery

Pharmazie 2001 56 554 560

Vyas, S. P.; Sihorkar, V.; Dubey, P. K. Preparation, characterization and in vitro antimicrobial activity of metronidazole bearing lectinized liposomes for intra-periodontal pocket delivery. Pharmazie 2001, 56, 554−560.

Baidu ScholarGoogle Scholar
120 Meers, P.; Neville, M.; Malinin, V.; Scotto, A. W.; Sardaryan, G.; Kurumunda, R.; Mackinson, C.; James, G.; Fisher, S.; Perkins, W. R.

Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections

J. Antimicrob. Chemother. 2008 61 859 868 10.1093/jac/dkn059

Meers, P.; Neville, M.; Malinin, V.; Scotto, A. W.; Sardaryan, G.; Kurumunda, R.; Mackinson, C.; James, G.; Fisher, S.; Perkins, W. R. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 2008, 61, 859−868.

Baidu ScholarGoogle Scholar
121 Hu, F.; Zhou, Z.; Xu, Q.; Fan, C.; Wang, L.; Ren, H.; Xu, S.; Ji, Q.; Chen, X.

A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment

Int. J. Biol. Macromol. 2019 129 1113 1119 10.1016/j.ijbiomac.2018.09.057

Hu, F.; Zhou, Z.; Xu, Q.; Fan, C.; Wang, L.; Ren, H.; Xu, S.; Ji, Q.; Chen, X. A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment. Int. J. Biol. Macromol. 2019, 129, 1113−1119.

Baidu ScholarGoogle Scholar
122 Zhou, Z.; Hu, F.; Hu, S.; Kong, M.; Feng, C.; Liu, Y.; Cheng, X.; Ji, Q.; Chen, X.

pH-Activated nanoparticles with targeting for the treatment of oral plaque biofilm

J. Mater. Chem. B 2018 6 586 592 10.1039/C7TB02682J

Zhou, Z.; Hu, F.; Hu, S.; Kong, M.; Feng, C.; Liu, Y.; Cheng, X.; Ji, Q.; Chen, X. pH-Activated nanoparticles with targeting for the treatment of oral plaque biofilm. J. Mater. Chem. B 2018, 6, 586−592.

Baidu ScholarGoogle Scholar
123 Rozenbaum, R. T.; Su, L.; Umerska, A.; Eveillard, M.; Hakansson, J.; Mahlapuu, M.; Huang, F.; Liu, J.; Zhang, Z.; Shi, L.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

Antimicrobial synergy of monolaurin lipid nanocapsules with adsorbed antimicrobial peptides against Staphylococcus aureus biofilms in vitro is absent in vivo

J. Control. Release 2019 293 73 83 10.1016/j.jconrel.2018.11.018

Rozenbaum, R. T.; Su, L.; Umerska, A.; Eveillard, M.; Hakansson, J.; Mahlapuu, M.; Huang, F.; Liu, J.; Zhang, Z.; Shi, L.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K. Antimicrobial synergy of monolaurin lipid nanocapsules with adsorbed antimicrobial peptides against Staphylococcus aureus biofilms in vitro is absent in vivo. J. Control. Release 2019, 293, 73−83.

Baidu ScholarGoogle Scholar
124 Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K.

Liposome: classification, preparation, and applications

Nanoscale Res. Lett 2013 8 102 10.1186/1556-276X-8-102

Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett 2013, 8, 102.

Baidu ScholarGoogle Scholar
125 Liu, D. Q.; Sun, H.; Xiao, Y. F.; Chen, S.; Cornel, E. J.; Zhu, Y. Q.; Du, J. Z.

Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes

J. Control. Release 2020 326 365 386 10.1016/j.jconrel.2020.07.018

Liu, D. Q.; Sun, H.; Xiao, Y. F.; Chen, S.; Cornel, E. J.; Zhu, Y. Q.; Du, J. Z. Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. J. Control. Release 2020, 326, 365−386.

Baidu ScholarGoogle Scholar
126 Xi, Y.; Wang, Y.; Gao, J.; Xiao, Y.; Du, J.

Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis

ACS Nano 2019 13 13645 13657 10.1021/acsnano.9b03237

Xi, Y.; Wang, Y.; Gao, J.; Xiao, Y.; Du, J. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis. ACS Nano 2019, 13, 13645−13657.

Baidu ScholarGoogle Scholar
127 Gao, Y.; Wang, J.; Chai, M.; Li, X.; Deng, Y.; Jin, Q.; Ji, J.

Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management

ACS Nano 2020 14 5686 5699 10.1021/acsnano.0c00269

Gao, Y.; Wang, J.; Chai, M.; Li, X.; Deng, Y.; Jin, Q.; Ji, J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano 2020, 14, 5686−5699.

Baidu ScholarGoogle Scholar
128 Zhang, L. J.; Parente, J.; Harris, S. A.; Woods, D. E.; Hancock, R. E. W.; Fallal, T. J.

Antimicrobial peptide therapeutics for cystic fibrosis

Antimicrob. Agents Chemother. 2005 49 2921 2927 10.1128/AAC.49.7.2921-2927.2005

Zhang, L. J.; Parente, J.; Harris, S. A.; Woods, D. E.; Hancock, R. E. W.; Fallal, T. J. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob. Agents Chemother. 2005, 49, 2921−2927.

Baidu ScholarGoogle Scholar
129 Karlsson, A. J.; Pomerantz, W. C.; Weisblum, B.; Gellman, S. H.; Palecek, S. P.

Antifungal activity from 14-helical β-peptides

J. Am. Chem. Soc. 2006 128 12630 12631 10.1021/ja064630y

Karlsson, A. J.; Pomerantz, W. C.; Weisblum, B.; Gellman, S. H.; Palecek, S. P. Antifungal activity from 14-helical β-peptides. J. Am. Chem. Soc. 2006, 128, 12630−12631.

Baidu ScholarGoogle Scholar
130 Hancock, R. E. W.; Sahl, H. G.

Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies

Nat. Biotechnol. 2006 24 1551 1557 10.1038/nbt1267

Hancock, R. E. W.; Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24, 1551−1557.

Baidu ScholarGoogle Scholar
131 Hancock, R. E.

Cationic peptides: effectors in innate immunity and novel antimicrobials

Lancet Infect. Dis. 2001 1 156 164 10.1016/S1473-3099(01)00092-5

Hancock, R. E. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 2001, 1, 156−164.

Baidu ScholarGoogle Scholar
132 Epand, R. M.; Vogel, H. J.

Diversity of antimicrobial peptides and their mechanisms of action

Biochim. Biophys. Acta-Biomembr. 1999 1462 11 28 10.1016/S0005-2736(99)00198-4

Epand, R. M.; Vogel, H. J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta-Biomembr. 1999, 1462, 11−28.

Baidu ScholarGoogle Scholar
133 Aliferis, T.; Iatrou, H.; Hadjichristidis, N.

Living polypeptides

Biomacromolecules 2004 5 1653 1656 10.1021/bm0497217

Aliferis, T.; Iatrou, H.; Hadjichristidis, N. Living polypeptides. Biomacromolecules 2004, 5, 1653−1656.

Baidu ScholarGoogle Scholar
134 Zasloff, M.

Antimicrobial peptides of multicellular organisms

Nature 2002 415 389 395 10.1038/415389a

Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389−395.

Baidu ScholarGoogle Scholar
135 Lam, S. J.; O'Brien-Simpson, N. M.; Pantarat, N.; Sulistio, A.; Wong, E. H.; Chen, Y. Y.; Lenzo, J. C.; Holden, J. A.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G.

Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers

Nat. Microbiol 2016 1 16162 10.1038/nmicrobiol.2016.162

Lam, S. J.; O'Brien-Simpson, N. M.; Pantarat, N.; Sulistio, A.; Wong, E. H.; Chen, Y. Y.; Lenzo, J. C.; Holden, J. A.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol 2016, 1, 16162.

Baidu ScholarGoogle Scholar
136 Zhou, C.; Wang, M.; Zou, K.; Chen, J.; Zhu, Y.; Du, J.

Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs

ACS Macro Lett. 2013 2 1021 1025 10.1021/mz400480z

Zhou, C.; Wang, M.; Zou, K.; Chen, J.; Zhu, Y.; Du, J. Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs. ACS Macro Lett. 2013, 2, 1021−1025.

Baidu ScholarGoogle Scholar
137 Ergene, C.; Yasuhara, K.; Palermo, E. F.

Biomimetic antimicrobial polymers: recent advances in molecular design

Polym. Chem. 2018 9 2407 2427 10.1039/C8PY00012C

Ergene, C.; Yasuhara, K.; Palermo, E. F. Biomimetic antimicrobial polymers: recent advances in molecular design. Polym. Chem. 2018, 9, 2407−2427.

Baidu ScholarGoogle Scholar
138 Rahman, M. A.; Bam, M.; Luat, E.; Jui, M. S.; Ganewatta, M. S.; Shokfai, T.; Nagarkatti, M.; Decho, A. W.; Tang, C.

Macromolecular-clustered facial amphiphilic antimicrobials

Nat. Commun. 2018 9 5231 10.1038/s41467-018-07651-7

Rahman, M. A.; Bam, M.; Luat, E.; Jui, M. S.; Ganewatta, M. S.; Shokfai, T.; Nagarkatti, M.; Decho, A. W.; Tang, C. Macromolecular-clustered facial amphiphilic antimicrobials. Nat. Commun. 2018, 9, 5231.

Baidu ScholarGoogle Scholar
139 Xiong, M.; Han, Z.; Song, Z.; Yu, J.; Ying, H.; Yin, L.; Cheng, J.

Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition

Angew. Chem. Int. Ed. 2017 56 10826 10829 10.1002/anie.201706071

Xiong, M.; Han, Z.; Song, Z.; Yu, J.; Ying, H.; Yin, L.; Cheng, J. Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition. Angew. Chem. Int. Ed. 2017, 56, 10826−10829.

Baidu ScholarGoogle Scholar
140 Xiong, M. H.; Bao, Y.; Xu, X.; Wang, H.; Han, Z. Y.; Wang, Z. Y.; Liu, Y. Q.; Huang, S. Y.; Song, Z. Y.; Chen, J. J.; Peek, R. M.; Yin, L. C.; Chen, L. F.; Cheng, J. J.

Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides

Proc. Natl. Acad. Sci. U. S. A. 2017 114 12675 12680 10.1073/pnas.1710408114

Xiong, M. H.; Bao, Y.; Xu, X.; Wang, H.; Han, Z. Y.; Wang, Z. Y.; Liu, Y. Q.; Huang, S. Y.; Song, Z. Y.; Chen, J. J.; Peek, R. M.; Yin, L. C.; Chen, L. F.; Cheng, J. J. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 12675−12680.

Baidu ScholarGoogle Scholar
141 Davies, D. G.

Biofilm dispersion

Biofilm Highlights 2011 5 571 10.1007/978-3-642-19940-0_1

Davies, D. G. Biofilm dispersion. Biofilm Highlights 2011, 5, 571.

Baidu ScholarGoogle Scholar
142 Fleming, D.; Rumbaugh, K. P.

Approaches to dispersing medical biofilms

Microorganisms 2017 5 15 10.3390/microorganisms5020015

Fleming, D.; Rumbaugh, K. P. Approaches to dispersing medical biofilms. Microorganisms 2017, 5, 15.

Baidu ScholarGoogle Scholar
143 Guilhen, C.; Forestier, C.; Balestrino, D.

Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties

Mol. Microbiol. 2017 105 188 210 10.1111/mmi.13698

Guilhen, C.; Forestier, C.; Balestrino, D. Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol. Microbiol. 2017, 105, 188−210.

Baidu ScholarGoogle Scholar
144 Kaplan, J. B.; LoVetri, K.; Cardona, S. T.; Madhyastha, S.; Sadovskaya, I.; Jabbouri, S.; Izano, E. A.

Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci

J. Antibiot. 2012 65 73 77 10.1038/ja.2011.113

Kaplan, J. B.; LoVetri, K.; Cardona, S. T.; Madhyastha, S.; Sadovskaya, I.; Jabbouri, S.; Izano, E. A. Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J. Antibiot. 2012, 65, 73−77.

Baidu ScholarGoogle Scholar
145 Lister, J. L.; Horswill, A. R.

Staphylococcus aureus biofilms: recent developments in biofilm dispersal

Front. Cell. Infect. Microbiol. 2014 4 178 10.3389/fcimb.2014.00178

Lister, J. L.; Horswill, A. R. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 2014, 4, 178.

Baidu ScholarGoogle Scholar
146 Swartjes, J. J. T. M.; Das, T.; Sharifi, S.; Subbiahdoss, G.; Sharma, P. K.; Krom, B. P.; Busscher, H. J.; van der Mei, H. C.

A Functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm

Adv. Funct. Mater. 2013 23 2843 2849 10.1002/adfm.201202927

Swartjes, J. J. T. M.; Das, T.; Sharifi, S.; Subbiahdoss, G.; Sharma, P. K.; Krom, B. P.; Busscher, H. J.; van der Mei, H. C. A Functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm. Adv. Funct. Mater. 2013, 23, 2843−2849.

Baidu ScholarGoogle Scholar
147 Al-Shabib, N. A.; Husain, F. M.; Ahmed, F.; Khan, R. A.; Khan, M. S.; Ansari, F. A.; Alam, M. Z.; Ahmed, M. A.; Khan, M. S.; Baig, M. H.; Khan, J. M.; Shahzad, S. A.; Arshad, M.; Alyousef, A.; Ahmad, I.

Low temperature synthesis of superparamagnetic iron oxide (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria

Front. Microbiol. 2018 9 2567 10.3389/fmicb.2018.02567

Al-Shabib, N. A.; Husain, F. M.; Ahmed, F.; Khan, R. A.; Khan, M. S.; Ansari, F. A.; Alam, M. Z.; Ahmed, M. A.; Khan, M. S.; Baig, M. H.; Khan, J. M.; Shahzad, S. A.; Arshad, M.; Alyousef, A.; Ahmad, I. Low temperature synthesis of superparamagnetic iron oxide (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria. Front. Microbiol. 2018, 9, 2567.

Baidu ScholarGoogle Scholar
148 Gao, L.; Giglio, K. M.; Nelson, J. L.; Sondermann, H.; Travis, A. J.

Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination

Nanoscale 2014 6 2588 2593 10.1039/C3NR05422E

Gao, L.; Giglio, K. M.; Nelson, J. L.; Sondermann, H.; Travis, A. J. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 2014, 6, 2588−2593.

Baidu ScholarGoogle Scholar
149 Gao, L.; Liu, Y.; Kim, D.; Li, Y.; Hwang, G.; Naha, P. C.; Cormode, D. P.; Koo, H.

Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo

Biomaterials 2016 101 272 284 10.1016/j.biomaterials.2016.05.051

Gao, L.; Liu, Y.; Kim, D.; Li, Y.; Hwang, G.; Naha, P. C.; Cormode, D. P.; Koo, H. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 2016, 101, 272−284.

Baidu ScholarGoogle Scholar
150 Yan, Z.; Bing, W.; Ding, C.; Dong, K.; Ren, J.; Qu, X.

A H2O2-free depot for treating bacterial infection: localized cascade reactions to eradicate biofilms in vivo

Nanoscale 2018 10 17656 17662 10.1039/C8NR03963A

Yan, Z.; Bing, W.; Ding, C.; Dong, K.; Ren, J.; Qu, X. A H2O2-free depot for treating bacterial infection: localized cascade reactions to eradicate biofilms in vivo. Nanoscale 2018, 10, 17656−17662.

Baidu ScholarGoogle Scholar
151 Diez-Castellnou, M.; Mancin, F.; Scrimin, P.

Efficient phosphodiester cleaving nanozymes resulting from multivalency and local medium polarity control

J. Am. Chem. Soc. 2014 136 1158 1161 10.1021/ja411969e

Diez-Castellnou, M.; Mancin, F.; Scrimin, P. Efficient phosphodiester cleaving nanozymes resulting from multivalency and local medium polarity control. J. Am. Chem. Soc. 2014, 136, 1158−1161.

Baidu ScholarGoogle Scholar
152 Bleem, A.; Francisco, R.; Bryers, J. D.; Daggett, V.

Designed α-sheet peptides suppress amyloid formation in Staphylococcus aureus biofilms

Npj Biofilms and Microbiomes. 2017 3 16 10.1038/s41522-017-0025-2

Bleem, A.; Francisco, R.; Bryers, J. D.; Daggett, V. Designed α-sheet peptides suppress amyloid formation in Staphylococcus aureus biofilms. Npj Biofilms and Microbiomes. 2017, 3, 16.

Baidu ScholarGoogle Scholar
153 De la Fuente-Nunez, C.; Reffuveille, F.; Haney, E. F.; Straus, S. K.; Hancock, R. E. W.

Broad-spectrum anti-biofilm peptide that targets a cellular stress response

PLoS Path. 2014 10 e1004152 10.1371/journal.ppat.1004152

De la Fuente-Nunez, C.; Reffuveille, F.; Haney, E. F.; Straus, S. K.; Hancock, R. E. W. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Path. 2014, 10, e1004152.

Baidu ScholarGoogle Scholar
154 Paranjapye, N.; Daggett, V.

De Novo designed α-sheet peptides inhibit functional amyloid formation of Streptococcus mutans biofilms

J. Mol. Biol. 2018 430 3764 3773 10.1016/j.jmb.2018.07.005

Paranjapye, N.; Daggett, V. De Novo designed α-sheet peptides inhibit functional amyloid formation of Streptococcus mutans biofilms. J. Mol. Biol. 2018, 430, 3764−3773.

Baidu ScholarGoogle Scholar
155 Zhang, S.; Xiao, X. M.; Qi, F.; Ma, P. C.; Zhang, W. W.; Dai, C. Z.; Zhang, D. F.; Liu, R. H.

Biofilm disruption utilizing α/β chimeric polypeptide molecular brushes

Chinese J. Polym. Sci. 2019 37 1105 1112 10.1007/s10118-019-2278-0

Zhang, S.; Xiao, X. M.; Qi, F.; Ma, P. C.; Zhang, W. W.; Dai, C. Z.; Zhang, D. F.; Liu, R. H. Biofilm disruption utilizing α/β chimeric polypeptide molecular brushes. Chinese J. Polym. Sci. 2019, 37, 1105−1112.

Baidu ScholarGoogle Scholar
156 Frei, R.; Breitbach, A. S.; Blackwell, H. E.

2-Aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms

Angew. Chem. Int. Ed. 2012 51 5226 5229 10.1002/anie.201109258

Frei, R.; Breitbach, A. S.; Blackwell, H. E. 2-Aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms. Angew. Chem. Int. Ed. 2012, 51, 5226−5229.

Baidu ScholarGoogle Scholar
157 Ng, W.-L.; Bassler, B. L.

Bacterial quorum-sensing network architectures

Annu. Rev. Genet. 2009 43 197 222 10.1146/annurev-genet-102108-134304

Ng, W.-L.; Bassler, B. L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 2009, 43, 197−222.

Baidu ScholarGoogle Scholar
158 Kolodkin-Gal, I.; Romero, D.; Cao, S.; Clardy, J.; Kolter, R.; Losick, R.

D-amino acids trigger biofilm disassembly

Science 2010 328 627 629 10.1126/science.1188628

Kolodkin-Gal, I.; Romero, D.; Cao, S.; Clardy, J.; Kolter, R.; Losick, R. D-amino acids trigger biofilm disassembly. Science 2010, 328, 627−629.

Baidu ScholarGoogle Scholar
159 Bonnichsen, L.; Svenningsen, N. B.; Rybtke, M.; de Bruijn, I.; Raaijmakers, J. M.; Tolker-Nielsen, T.; Nybroe, O.

Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms

Microbiology-Sgm. 2015 161 2289 2297 10.1099/mic.0.000191

Bonnichsen, L.; Svenningsen, N. B.; Rybtke, M.; de Bruijn, I.; Raaijmakers, J. M.; Tolker-Nielsen, T.; Nybroe, O. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology-Sgm. 2015, 161, 2289−2297.

Baidu ScholarGoogle Scholar
160 Davey, M. E.; Caiazza, N. C.; O'Toole, G. A.

Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1

J. Bacteriol. 2003 185 1027 1036 10.1128/JB.185.3.1027-1036.2003

Davey, M. E.; Caiazza, N. C.; O'Toole, G. A. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2003, 185, 1027−1036.

Baidu ScholarGoogle Scholar
161 Engelsman, A. F.; Krom, B. P.; Busscher, H. J.; van Dam, G. M.; Ploeg, R. J.; van der Mei, H. C.

Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model

Acta Biomater. 2009 5 1905 1910 10.1016/j.actbio.2009.01.041

Engelsman, A. F.; Krom, B. P.; Busscher, H. J.; van Dam, G. M.; Ploeg, R. J.; van der Mei, H. C. Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomater. 2009, 5, 1905−1910.

Baidu ScholarGoogle Scholar
162 Chen, M.; Wei, J.; Xie, S.; Tao, X.; Zhang, Z.; Ran, P.; Li, X.

Bacterial biofilm destruction by size/surface charge-adaptive micelles

Nanoscale 2019 11 1410 1422 10.1039/C8NR05575K

Chen, M.; Wei, J.; Xie, S.; Tao, X.; Zhang, Z.; Ran, P.; Li, X. Bacterial biofilm destruction by size/surface charge-adaptive micelles. Nanoscale 2019, 11, 1410−1422.

Baidu ScholarGoogle Scholar
163 Liu, C.; Zhao, Y.; Su, W.; Chai, J.; Xu, L.; Cao, J.; Liu, Y.

Encapsulated DNase improving the killing efficiency of antibiotics in staphylococcal biofilms

J. Mater. Chem. B 2020 8 4395 4401 10.1039/D0TB00441C

Liu, C.; Zhao, Y.; Su, W.; Chai, J.; Xu, L.; Cao, J.; Liu, Y. Encapsulated DNase improving the killing efficiency of antibiotics in staphylococcal biofilms. J. Mater. Chem. B 2020, 8, 4395−4401.

Baidu ScholarGoogle Scholar
164 Abenojar, E. C.; Wickramasinghe, S.; Ju, M.; Uppaluri, S.; Klika, A.; George, J.; Barsoum, W.; Frangiamore, S. J.; Higuera-Rueda, C. A.; Samia, A. C. S.

Magnetic glycol chitin-based hydrogel nanocomposite for combined thermal and D-amino-acid-assisted biofilrn disruption

ACS Infect. Dis. 2018 4 1246 1256 10.1021/acsinfecdis.8b00076

Abenojar, E. C.; Wickramasinghe, S.; Ju, M.; Uppaluri, S.; Klika, A.; George, J.; Barsoum, W.; Frangiamore, S. J.; Higuera-Rueda, C. A.; Samia, A. C. S. Magnetic glycol chitin-based hydrogel nanocomposite for combined thermal and D-amino-acid-assisted biofilrn disruption. ACS Infect. Dis. 2018, 4, 1246−1256.

Baidu ScholarGoogle Scholar
165 Duong, H. T. T.; Adnan, N. N. M.; Barraud, N.; Basuki, J. S.; Kutty, S. K.; Jung, K.; Kumar, N.; Davis, T. P.; Boyer, C.

Functional gold nanoparticles for the storage and controlled release of nitric oxide: applications in biofilm dispersal and intracellular delivery

J. Mater. Chem. B 2014 2 5003 5011 10.1039/C4TB00632A

Duong, H. T. T.; Adnan, N. N. M.; Barraud, N.; Basuki, J. S.; Kutty, S. K.; Jung, K.; Kumar, N.; Davis, T. P.; Boyer, C. Functional gold nanoparticles for the storage and controlled release of nitric oxide: applications in biofilm dispersal and intracellular delivery. J. Mater. Chem. B 2014, 2, 5003−5011.

Baidu ScholarGoogle Scholar
166 Hasan, N.; Cao, J.; Lee, J.; Naeem, M.; Hlaing, S. P.; Kim, J.; Jung, Y.; Lee, B. L.; Yoo, J. W.

PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix

Mater. Sci. Eng. C-Mater. Biol. Appl. 2019 103 109741 10.1016/j.msec.2019.109741

Hasan, N.; Cao, J.; Lee, J.; Naeem, M.; Hlaing, S. P.; Kim, J.; Jung, Y.; Lee, B. L.; Yoo, J. W. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 103, 109741.

Baidu ScholarGoogle Scholar
167 Nguyen, T. K.; Selvanayagam, R.; Ho, K. K. K.; Chen, R.; Kutty, S. K.; Rice, S. A.; Kumar, N.; Barraud, N.; Duong, H. T. T.; Boyer, C.

Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles

Chem. Sci. 2016 7 1016 1027 10.1039/C5SC02769A

Nguyen, T. K.; Selvanayagam, R.; Ho, K. K. K.; Chen, R.; Kutty, S. K.; Rice, S. A.; Kumar, N.; Barraud, N.; Duong, H. T. T.; Boyer, C. Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles. Chem. Sci. 2016, 7, 1016−1027.

Baidu ScholarGoogle Scholar
168 Tan, Y.; Ma, S.; Liu, C.; Yu, W.; Han, F.

Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles

Microbiol. Res. 2015 178 35 41 10.1016/j.micres.2015.06.001

Tan, Y.; Ma, S.; Liu, C.; Yu, W.; Han, F. Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles. Microbiol. Res. 2015, 178, 35−41.

Baidu ScholarGoogle Scholar
169 Patel, K. K.; Agrawal, A. K.; Anjum, M. M.; Tripathi, M.; Pandey, N.; Bhattacharya, S.; Tilak, R.; Singh, S.

DNase-I functionalization of ciprofloxacin-loaded chitosan nanoparticles overcomes the biofilm-mediated resistance of Pseudomonas aeruginosa

Appl. Nanosci. 2020 10 563 575 10.1007/s13204-019-01129-8

Patel, K. K.; Agrawal, A. K.; Anjum, M. M.; Tripathi, M.; Pandey, N.; Bhattacharya, S.; Tilak, R.; Singh, S. DNase-I functionalization of ciprofloxacin-loaded chitosan nanoparticles overcomes the biofilm-mediated resistance of Pseudomonas aeruginosa. Appl. Nanosci. 2020, 10, 563−575.

Baidu ScholarGoogle Scholar
170 Hayden, S. C.; Zhao, G.; Saha, K.; Phillips, R. L.; Li, X.; Miranda, O. R.; Rotello, V. M.; El-Sayed, M. A.; Schmidt-Krey, I.; Bunz, U. H.

Aggregation and interaction of cationic nanoparticles on bacterial surfaces

J. Am. Chem. Soc. 2012 134 6920 3 10.1021/ja301167y

Hayden, S. C.; Zhao, G.; Saha, K.; Phillips, R. L.; Li, X.; Miranda, O. R.; Rotello, V. M.; El-Sayed, M. A.; Schmidt-Krey, I.; Bunz, U. H. Aggregation and interaction of cationic nanoparticles on bacterial surfaces. J. Am. Chem. Soc. 2012, 134, 6920−3.

Baidu ScholarGoogle Scholar
171 Duan, X.; Li, Y.

Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking

Small 2013 9 1521 1532 10.1002/smll.201201390

Duan, X.; Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013, 9, 1521−1532.

Baidu ScholarGoogle Scholar
172 Tian, S.; Su, L.; Liu, Y.; Cao, J.; Yang, G.; Ren, Y.; Huang, F.; Liu, J.; An, Y.; van der Mei, H. C.; Busscher, H. J.; Shi, L.

Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms—an intravital imaging study in mice

Sci. Adv. 2020 6 eabb1112 10.1126/sciadv.abb1112

Tian, S.; Su, L.; Liu, Y.; Cao, J.; Yang, G.; Ren, Y.; Huang, F.; Liu, J.; An, Y.; van der Mei, H. C.; Busscher, H. J.; Shi, L. Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms—an intravital imaging study in mice. Sci. Adv. 2020, 6, eabb1112.

Baidu ScholarGoogle Scholar
173 Hu, D.; Deng, Y.; Jia, F.; Jin, Q.; Ji, J.

Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms

ACS Nano. 2020 14 347 359 10.1021/acsnano.9b05493

Hu, D.; Deng, Y.; Jia, F.; Jin, Q.; Ji, J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano. 2020, 14, 347−359.

Baidu ScholarGoogle Scholar
174 Zhao, Y.; Li, Q.; Chai, J.; Liu, Y.

Cargo-templated crosslinked polymer nanocapsules and their biomedical applications

Adv. NanoBiomed Res. 2021 1 2000078 10.1002/anbr.202000078

Zhao, Y.; Li, Q.; Chai, J.; Liu, Y. Cargo-templated crosslinked polymer nanocapsules and their biomedical applications. Adv. NanoBiomed Res. 2021, 1, 2000078.

Baidu ScholarGoogle Scholar
175 Li, Y.; Liu, Y.; Ren, Y.; Su, L.; Li, A.; An, Y.; Rotello, V.; Zhang, Z.; Wang, Y.; Liu, Y.; Liu, S.; Liu, J.; Laman, J. D.; Shi, L.; Mei, H. C.; Busscher, H. J.

Coating of a novel antimicrobial nanoparticle with a macrophage membrane for the selective entry into infected macrophages and killing of intracellular Staphylococci

Adv. Funct. Mater. 2020 30 2004942 10.1002/adfm.202004942

Li, Y.; Liu, Y.; Ren, Y.; Su, L.; Li, A.; An, Y.; Rotello, V.; Zhang, Z.; Wang, Y.; Liu, Y.; Liu, S.; Liu, J.; Laman, J. D.; Shi, L.; Mei, H. C.; Busscher, H. J. Coating of a novel antimicrobial nanoparticle with a macrophage membrane for the selective entry into infected macrophages and killing of intracellular Staphylococci. Adv. Funct. Mater. 2020, 30, 2004942.

Baidu ScholarGoogle Scholar
176 Li, Y.; Yang, G.; Ren, Y.; Shi, L.; Ma, R.; van der Mei, H. C.; Busscher, H. J.

Applications and perspectives of cascade reactions in bacterial infection control

Front. Chem. 2020 7 861 10.3389/fchem.2019.00861

Li, Y.; Yang, G.; Ren, Y.; Shi, L.; Ma, R.; van der Mei, H. C.; Busscher, H. J. Applications and perspectives of cascade reactions in bacterial infection control. Front. Chem. 2020, 7, 861.

Baidu ScholarGoogle Scholar